
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

FLÁVIO BORGES DE LIMA

IMPLANTAÇÃO DE CLUSTER KUBERNETES EM COMPUTADORES COM
PODER COMPUTACIONAL LIMITADO

GUARAPUAVA

2025

FLÁVIO BORGES DE LIMA

IMPLANTAÇÃO DE CLUSTER KUBERNETES EM COMPUTADORES COM

PODER COMPUTACIONAL LIMITADO

Deployment of Kubernetes Cluster for Computer Network with Limited

Computational Power

Trabalho de Conclusão de Curso de Graduação
apresentado como requisito para obtenção do
título de Tecnólogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Hermano Pereira

Coorientador: Profª. Drª. Sediane Carmem
Lunardi Hernandes

GUARAPUAVA

2025

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do traba-
lho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es).
Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são co-
bertos pela licença.4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

FLÁVIO BORGES DE LIMA

IMPLANTAÇÃO DE CLUSTER KUBERNETES EM COMPUTADORES COM

PODER COMPUTACIONAL LIMITADO

Trabalho de Conclusão de Curso de Graduação
apresentado como requisito para obtenção do
título de Tecnólogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnológica Federal do Paraná.

Data de aprovação: 26/novembro/2025

Hermano Pereira
Doutor

Universidade Tecnológica Federal do Paraná

Sediane Carmem Lunardi Hernandes
Doutora

Universidade Tecnológica Federal do Paraná

William Alberto Cruz Castaneda
Doutor

Universidade Tecnológica Federal do Paraná

GUARAPUAVA

2025

AGRADECIMENTOS

Certamente estes parágrafos não irão atender a todas as pessoas que fizeram parte

dessa importante fase de minha vida. Portanto, desde já peço desculpas àquelas que não estão

presentes entre essas palavras pois foram muitas, mas elas podem estar certas que fazem parte

do meu pensamento e de minha gratidão.

Agradeço ao meu orientador Prof. Dr. Hermano Pereira e a minha coorientadora Profª.

Drª. Sediane Carmem Lunardi Hernandes pela sabedoria, conhecimento e paciência enorme

com que me guiou nesta trajetória.

Agradeço aos meus pais (Jaqueline e Márcio), irmão (Ângelo Gabriel) e demais familia-

res.

A todos os alunos e professores da UTFPR que me apoiaram e incentivaram durante

este percurso.

Em especial quero agradecer ao projeto de extensão Tecnolixo por fornecer o hardware

utilizado no trabalho. Também gostaria de agradecer aos participantes do projeto de extensão

Asimov, em especial ao Daniel Ahyub Lacerda, por ajudar na manutenção de alguns dos com-

putadores.

Enfim, a todos os que por algum motivo contribuíram para a realização desta pesquisa.

RESUMO

Este trabalho propõe uma alternativa econômica, sustentável e funcional para a reutilização

de hardware com recursos computacionais limitados, por meio da implantação de um cluster

Kubernetes. Foram avaliadas três distribuições otimizadas da ferramenta — k3s, k0s e

MicroK8s — instaladas em computadores antigos, com o objetivo de analisar o desempenho

sob diferentes cargas de trabalho. Os experimentos incluíram aplicações com requisições

concorrentes e tarefas sequenciais intensivas em CPU. Os resultados indicam que o uso

dessas distribuições em ambientes com restrições de recursos é viável, especialmente em

cenários com aplicações distribuídas leves. A proposta demonstrou potencial para uso em

contextos educacionais, laboratoriais e projetos de baixo custo, destacando-se como uma

solução prática para o reaproveitamento de equipamentos obsoletos.

Palavras-chave: kubernetes; clusters; recursos limitados; computação distribuída; otimização

de desempenho.

ABSTRACT

This work presents an economical, sustainable, and functional proposal for reusing compu-

ters with limited computational power by deploying a Kubernetes cluster. Three lightweight

distributions — k3s, k0s, and MicroK8s — were tested on outdated machines to assess their

performance under different workloads. The experiments involved applications with concurrent

requests and sequential, CPU-intensive tasks. The results showed that these distributions

are viable for managing lightweight distributed applications in constrained environments. The

proposed solution demonstrates potential for educational and experimental contexts, standing

out as a practical and low-cost alternative for repurposing obsolete hardware.

Keywords: kubernetes; clusters; limited resources; distributed computing; performance optimi-

zation.

LISTA DE FIGURAS

Figura 1 – Balanceamento de carga usando o Balanceador de Carga (LB, do inglês

Load Balancer) no Kubernetes. 15

Figura 2 – Ciclo de vida de um requisição do número de Fibonacci. 21

Figura 3 – Comparação de Uso de Unidade de Processamento Central (CPU, do

inglês Central Processing Unit) por Nó (Fibonacci número 18). 27

Figura 4 – Comparação de Uso de Memória de Acesso Aleatório (RAM, do inglês

Random Access Memory) por Nó (Fibonacci número 18). 28

Figura 5 – Comparação de Uso de CPU por Nó (Bubble Sort 215 items no vetor). . 29

Figura 6 – Comparação de Uso de RAM por Nó (Bubble Sort 215 items no vetor). . 30

LISTA DE ABREVIATURAS E SIGLAS

Siglas

API Interface de Programação de Aplicações (API, do inglês Application Program-

ming Interface)

ARP Protocolo de Resolução de Endereços (ARP, do inglês Address Resolution Pro-

tocol)

BGP Protocolo de Gateway de Fronteira (BGP, do inglês Border Gateway Protocol)

CPU Unidade de Processamento Central (CPU, do inglês Central Processing Unit)

GB Gigabyte (GB)

HA Alta Disponibilidade (HA, do inglês High Availability)

HPC Computação de Alta Performance (HPC, do inglês High-Performance Computing)

HTTP Protocolo de Transferência de Hipertexto (HTTP, do inglês Hypertext Transfer

Protocol)

IoT Internet das Coisas (IoT, do inglês Internet of Things)

IP Protocolo de Internet (IP, do inglês Internet Protocol)

JSON Notação de Objetos JavaScript (JSON, do inglês JavaScript Object Notation)

L2 Camada 2 (L2, do inglês Layer 2)

LAN Rede de Área Local (LAN, do inglês Local Area Network)

LB Balanceador de Carga (LB, do inglês Load Balancer)

OS Sistema Operacional (OS, do inglês Operating System)

OSI Modelo de Interconexão de Sistemas Abertos (OSI, do inglês Open Systems

Interconnection)

RAM Memória de Acesso Aleatório (RAM, do inglês Random Access Memory)

RPS Requisições por Segundo (RPS, do inglês Requests Per Second)

SSH SSH, do inglês Secure Shell

Acrônimos

K8s k8s é uma abreviação comum para Kubernetes, onde o ’8’ representa as oito

letras entre o ’K’ e o ’s’ (APPVIA, 2024)

RESTful Representational State Transfer

SUMÁRIO

1 INTRODUÇÃO . 10

1.1 Objetivos . 11

1.1.1 Objetivo geral . 11

1.1.2 Objetivos específicos . 11

1.2 Estrutura do trabalho . 11

2 REFERENCIAL TEÓRICO . 12

2.1 Clusters . 12

2.2 Containers . 12

2.2.1 Orquestração de containers . 13

2.3 Kubernetes . 13

2.3.1 Balanceamento de Carga . 14

2.3.2 Distribuições do Kubernetes . 16

2.4 Computadores com poder computacional limitado 16

3 TRABALHOS RELACIONADOS . 17

4 MATERIAIS E MÉTODOS . 18

4.1 Materiais . 18

4.1.1 Hardware . 18

4.1.2 Software . 19

4.2 Métodos . 20

4.2.1 Testes de Interação do cluster . 20

4.2.2 Ferramenta de automação dos testes . 21

4.2.3 Métricas . 23

5 RESULTADOS EXPERIMENTAIS . 25

5.1 Resultados por Tipo de Teste . 25

5.2 Análise de Desempenho . 26

5.2.1 Série de Fibonacci (Processamento distribuído) 26

5.2.2 Bubble Sort (Processamento Sequencial) 28

6 CONSIDERAÇÕES FINAIS . 31

REFERÊNCIAS . 32

GLOSSÁRIO . 34

APÊNDICES 35

APÊNDICE A – SCRIPT DE TESTE E APLICAÇÃO DE TESTE 37

10

1 INTRODUÇÃO

O conceito de cluster tem se tornado fundamental em ambientes que exigem proces-

samento distribuído (MONTEIRO et al., 2021). Um cluster é formado por um conjunto de com-

putadores que trabalham de forma colaborativa, aumentando a capacidade de processamento

ao distribuir tarefas entre os computadores. (IBM, 2024). Isso permite que sistemas computa-

cionais com recursos limitados, como computadores antigos, possam ser reaproveitados, sem

custos adicionais consideráveis, em configurações que maximizam o desempenho do sistema

como um todo.

Aplicações web podem ser distribuídas, permitindo que o armazenamento e o proces-

samento de dados sejam divididos entre os vários computadores em uma rede ou cluster de

computadores. De forma mais abrangente, aplicações que seguem o paradigma cliente-servidor

ou peer-to-peer podem se beneficiar do uso de clusters de computadores para um sistema dis-

tribuído.

Com tecnologias como containers, que isolam aplicações e garantem a portabilidade

entre diferentes sistemas, e o Kubernetes, que orquestra e gerencia esses containers (CNCF,

2024a), torna-se possível utilizar clusters Kubernetes para diversas finalidades, como mencio-

nado em (MONTEIRO et al., 2021), p. 154, "em seu cluster próprio (de forma local), em um

sistema de arquitetura híbrida ou até mesmo em qualquer provedor de computação na nuvem

pública.". Um cluster de computadores é considerado um sistema de arquitetura híbrido. Logo,

um cluster Kubernetes pode ser implantado considerando essa arquitetura.

A principal motivação deste trabalho é oferecer uma alternativa econômica e ambien-

talmente sustentável ao reaproveitamento de computadores com poder computacional limitado,

que normalmente seriam descartados. Ao implementar clusters Kubernetes nesses equipamen-

tos, é possível reduzir custos com aquisição de hardware e minimizar o impacto ambiental do

descarte de eletrônicos, promovendo o uso eficiente de recursos já disponíveis. Essa aborda-

gem viabiliza a criação de ambientes acessíveis para testes e desenvolvimento de aplicações

distribuídas, especialmente em contextos acadêmicos e experimentais.

Desta forma, este trabalho explorou cluster Kubernetes em computadores com capa-

cidade computacional limitada para aproveitar ao máximo o sistema computacional como um

todo.

11

1.1 Objetivos

1.1.1 Objetivo geral

Este trabalho teve como objetivo geral avaliar o desempenho de um cluster Kubernetes,

para aplicações distribuídas stateless, o qual foi implantado em máquinas com poder computa-

cional limitado.

1.1.2 Objetivos específicos

• Montar uma rede de computadores utilizando computadores com capacidade compu-

tacional limitada.

• Implantar um cluster Kubernetes na rede de computadores criada.

• Avaliar o desempenho do cluster Kubernetes criado, considerando suas limitações

computacionais, utilizando aplicações stateless, como aplicações web, por exemplo.

• Documentar o processo de configuração e implantação do cluster Kubernetes.

• Montar os gráficos resultantes das avaliações de desempenho (por exemplo, uso de

CPU, RAM e tempo de resposta) realizadas.

1.2 Estrutura do trabalho

O trabalho está dividido como segue. A Seção 1 contextualiza o problema e apresenta

os objetivos do trabalho e a justificativa para o seu desenvolvimento. A Seção 2 refere-se ao

Referencial Teórico, o qual aborda os principais conceitos e tecnologias utilizados no trabalho,

como clusters, containers, Kubernetes e Docker, além de discutir os desafios de uso de hard-

ware ultrapassado em ambientes distribuídos. A Seção 3 descreve os trabalhos relacionados e

na Seção 4 são citados o software, hardware e metodologias de testes que foram usados no

decorrer do trabalho. Na Seção 4, o desenvolvimento deste trabalho é apresentado, e na Seção

5 os resultados são descritos. Por fim, as referências bibliográficas são apresentadas.

12

2 REFERENCIAL TEÓRICO

Nesta Seção, apresentaram-se conceitos fundamentais relacionados ao desenvolvi-

mento deste trabalho, incluindo clusters, containers, orquestração de containers e Kubernetes,

com foco na implantação de clusters Kubernetes em máquinas com poder computacional limi-

tado.

2.1 Clusters

Segundo a IBM (2024), clusters são aglomerados de computadores que trabalham jun-

tos para executar tarefas, balanceando a carga de trabalho. Cada computador em um cluster é

chamado de nó (node), e cada nó é formado por um Sistema Operacional (OS, do inglês Ope-

rating System) e um software intermediário, que é responsável por gerenciar a comunicação e

a execução de tarefas no cluster. A estrutura de um cluster pode variar entre um único nó até

milhares de nós, geralmente conectados por uma Rede de Área Local (LAN, do inglês Local

Area Network) (IBM, 2024).

Os clusters podem ser divididos em dois grupos principais:

• Computação de Alta Performance (HPC, do inglês High-Performance Computing): Pro-

jetados para executar tarefas que precisam de um grande poder computacional, como

simulações científicas ou processamento de grande volume de dados.

• Alta Disponibilidade (HA, do inglês High Availability): Desenvolvidos para garantir que

os serviços e recursos permaneçam acessíveis, mesmo em caso de falhas em um ou

mais nós, geralmente sendo utilizados na hospedagem de aplicações.

Neste trabalho, foi utilizado um cluster de HA, gerenciado pelo Kubernetes, que foi ex-

plorado na Seção 4. A escolha do mesmo foi feita com base na facilidade de adicionar novos

nós (CNCF, 2024a) e na flexibilidade fornecida pelos containers (GOOGLE, 2024a).

No caso do Kubernetes, o cluster é composto por um ou mais nós de plano de controle

(do inglês, control plane) e um ou mais nós de trabalho (CNCF, 2024). Os nós de plano de con-

trole são responsáveis pela administração centralizada do cluster, enquanto os nós de trabalho

executam as cargas de trabalho, ou seja, os pods e containers das aplicações, mas em alguns

casos, o plano de controle pode ser configurado para operar como um nó de trabalho também

(ver Seção 2.3).

2.2 Containers

Segundo a Google (2024a) containers são "pacotes de software que contêm todos os

elementos necessários para serem executados em qualquer ambiente". Os containers utilizam

13

o mesmo kernel que a máquina hospedeira e, além disso, podem compartilhar camadas de

sistema de arquivos, o que permite que múltiplos containers usem as mesmas dependências

sem a necessidade de duplicá-las, poupando assim recursos computacionais como memória e

armazenamento.

Algumas características fundamentais dos containers incluem a fácil e confiável recri-

ação de um mesmo container, o isolamento entre as aplicações que estão sendo executadas

dentro de containers distintos em uma mesma máquina, e geralmente sendo mais leves em

comparação com máquinas virtuais (GOOGLE, 2024a). O isolamento é uma grande vantagem

dos containers, garantindo que as aplicações executadas em containers diferentes não inter-

firam uma nas outras, apesar de estarem rodando no mesmo OS e compartilhando o mesmo

kernel. Isso oferece segurança, evita conflitos de dependências entre os diferentes ambientes

de execução e gera uma facilidade em hospedar aplicações completamente distintas em um

mesmo ambiente.

Essas características tornam os containers ideais para maximizar a utilização do hard-

ware disponível. Devido à sua leveza em relação a máquinas virtuais e flexibilidade, é possível

executar múltiplos containers em uma única máquina ou distribuir a carga de trabalho entre

containers alocados em diferentes máquinas, otimizando a eficiência e a escalabilidade dos

recursos computacionais.

2.2.1 Orquestração de containers

De acordo com o Google Cloud (GOOGLE, 2024b), a orquestração de containers refere-

se à automação do gerenciamento de recursos e do ciclo de vida dos containers. Essa prática

desempenha um papel crucial na garantia da eficiência e escalabilidade em ambientes com

múltiplos containers, seja em sistemas independentes ou operando em clusters.

Neste trabalho, o Kubernetes foi empregado como a principal ferramenta de orquestra-

ção. Sua implantação permitiu a gestão eficiente dos recursos computacionais disponíveis, bem

como a distribuição equilibrada da carga de trabalho entre as máquinas do cluster, maximizando

a utilização de hardware limitado.

2.3 Kubernetes

O Kubernetes, também conhecido como K8s1, é uma plataforma de orquestração de

containers desenvolvida pela Google em 2014, projetada para automatizar a implantação, o

dimensionamento e a operação de containers (CNCF, 2024). O Kubernetes permite a criação

de clusters de HA, compostos por um ou mais nós de plano de controle e um ou mais nós

1 O termo “K8s” é uma abreviação de Kubernetes, onde o número “8” representa as oito letras entre
o “K” e o “s” na palavra “Kubernetes” (APPVIA, 2024). É uma prática comum em tecnologia para
abreviar nomes longos e complexos.

14

de trabalho. Os nós de plano de controle são responsáveis pela administração centralizada

do cluster, enquanto os nós de trabalho executam as cargas de trabalho, ou seja, os pods e

containers das aplicações, mas em alguns casos, o plano de controle pode ser configurado

para operar como um nó de trabalho também.

Os nós de plano de controle são responsáveis por manter o estado desejado do cluster

dentro de parâmetros definidos pelo administrador, como a quantidade de cópias de um pod

contendo um ou mais containers de uma aplicação ou a escolha do nó mais adequado para

executar a mesma, avaliando os recursos disponíveis.

Os nós de trabalho são responsáveis por executar um ou mais pods. Os pods são as

menores unidades de trabalho no Kubernetes, e cada um pode conter um ou mais containers

que compartilham recursos como rede e armazenamento.

Segundo CNCF (2024b). Os pods são efêmeros, o que significa que estes podem ser

criados, destruídos e recriados conforme necessário, dependendo das necessidades do cluster.

Os pods são gerenciados por um ou mais nós de plano de controle do Kubernetes, que monitora

o estado dos pods e garante que estes estejam sempre em conformidade com o estado dese-

jado definido pelo administrador do cluster. Se um pod falhar, ser destruído ou seja alterada a

quantidade de réplicas, o plano de controle pode automaticamente criar um ou mais pods para

substituí-lo, garantindo a continuidade do serviço.

No contexto deste trabalho, a aplicação do Kubernetes foi fundamental no balancea-

mento de carga de trabalho entre as máquinas do cluster utilizando um LB, garantindo o uso

eficiente do hardware disponível e maximizando o aproveitamento dos recursos computacionais.

2.3.1 Balanceamento de Carga

Dentro do Kubernetes, os pods possuem uma rede interna aonde containers podem

se comunicar entre si, mas aonde a rede externa não pode acessar esses. Para clientes que

desejam acessar aplicações existentes nesses pods, faz-se necessária a criação de Services.

Os Services expõem um ou mais pods para a rede externa. Existem diversos tipos de Services

com a mesma função, entretanto, neste trabalho o foco foi o LB Service (CNCF, 2024).

O LB Service no Kubernetes tem a capacidade de distribuir requisições entre um ou mais

nós, facilitando o acesso externo às aplicações hospedadas nos pods. Existem diversas imple-

mentações de LB para o Kubernetes; normalmente, esse componente é um serviço externo que

se integra ao Service do Kubernetes para encaminhar as requisições de forma equilibrada entre

os pods disponíveis. Neste trabalho, foi utilizado o MetalLB 2 (CNCF, 2025a), uma solução de

LB voltada para ambientes bare metal, ou seja, para infraestruturas que não estão hospedadas

em provedores de nuvem.

2 O nome MetalLB é uma combinação de “metal” (bare metal) e LB, refletindo seu propósito de fornecer
balanceamento de carga em ambientes bare metal. (CNCF, 2025a)

15

O MetalLB pode operar em dois modos principais (CNCF, 2025a): Protocolo de Gateway

de Fronteira (BGP, do inglês Border Gateway Protocol) e Camada 2 (L2, do inglês Layer 2). No

modo L2, correspondente à camada de enlace do modelo Modelo de Interconexão de Sistemas

Abertos (OSI, do inglês Open Systems Interconnection), o MetalLB responde a requisições de

Protocolo de Resolução de Endereços (ARP, do inglês Address Resolution Protocol) para um

endereço Protocolo de Internet (IP, do inglês Internet Protocol) virtual e elege um nó do cluster

para ser responsável por esse endereço, recebendo todas as requisições destinadas a esse.

Caso esse nó falhe, outro nó é automaticamente escolhido para assumir a responsabilidade. Já

no modo BGP, o MetalLB anuncia rotas para o endereço IP virtual utilizando o protocolo BGP,

permitindo que o tráfego seja roteado para os nós do cluster por meio de roteadores externos.

Neste trabalho, optou-se pelo modo L2 devido à sua simplicidade, facilidade de configuração

em ambientes locais e não necessitar de hardware especializado, tornando-o ideal para clusters

com recursos computacionais limitados.

No caso da utilização do MetalLB em modo L2, o balanceamento de carga é feito de

forma automática pelo Service do Kubernetes, que utiliza o kube-proxy para balancear as re-

quisições entre os pods disponíveis. O kube-proxy é um componente do Kubernetes que atua

como um proxy de rede, roteando o tráfego para os pods corretos com base nas regras defini-

das no Service (CNCF, 2025b), a regra padrão é o iptables, que distribui as requisições entre

os pods de forma randomizada.

Figura 1 – Balanceamento de carga usando o LB no Kubernetes.

Fonte: Adaptação de (GEEKSFORGEEKS, 2025).

Conforme pode ser observado na Figura 1, as requisições são recebidas pelo LB e

depois distribuídas pelo Service entre os pods, que contêm a mesma aplicação, juntamente

com a administração automática de qual nó de trabalho tem quais pods no cluster Kubernetes.

O LB é responsável por balancear a carga de processamento das requisições entre as máquinas

do cluster.

16

2.3.2 Distribuições do Kubernetes

Assim como outros diversos projetos de código aberto, o Kubernetes tem diversas va-

riações que foram criadas com base no seu projeto inicial. E algumas dessas variações se

especializaram na diminuição do consumo de recursos, como RAM e processamento da CPU,

podendo ser citadas:

• O k3s, desenvolvido para ambientes de Internet das Coisas (IoT, do inglês Internet

of Things), é otimizado para ser implantado em uma ampla gama de arquiteturas de

sistemas (Rancher Labs, 2024).

• O MicroK8s é uma versão simplificada e otimizada do Kubernetes, a qual foi projetada

para permitir a criação de clusters com facilidade e rapidez (CANONICAL, 2024).

• O k0s é uma variante bare metal do Kubernetes, ideal para ser utilizado em IoT, com

flexibilidade para ser implantado em diversos ambientes (K0S PROJECT, 2024).

As distribuições são variações que podem ser utilizadas em diferentes ambientes e para

vários propósitos.

Neste trabalho foram escolhidas distribuições do Kubernetes que são otimizadas para

consumir poucos recursos computacionais, como RAM e processamento da CPU, visando ma-

ximizar o aproveitamento do hardware disponível. As distribuições escolhidas foram o k3s, o

MicroK8s e o k0s.

2.4 Computadores com poder computacional limitado

O conceito de computadores com capacidade computacional limitada pode variar de-

pendendo do contexto de uso. Para os propósitos deste trabalho, define-se como máquinas

com recursos modestos em relação aos requisitos típicos de aplicações modernas. Nesta defi-

nição, incluem-se computadores que possuem 4 Gigabyte (GB) de RAM, processadores com 4

núcleos a 2 núcleos de CPU com arquitetura x86-64, características que restringem sua capa-

cidade de executar tarefas intensivas em recursos. Os computadores que foram utilizados são

descritos na Seção 4.1.1.

17

3 TRABALHOS RELACIONADOS

Diversos estudos abordam a utilização de Kubernetes em ambientes com recursos li-

mitados, destacando-se pela adaptação de arquiteturas para permitir a operação eficiente em

hardware de baixo custo. Esses trabalhos são relevantes para este, pois apresentam alterna-

tivas e abordagens que se alinham com a proposta de implantar um cluster Kubernetes em

computadores com poder computacional limitado.

Um estudo realizado por Silva (2022) aborda a implementação de soluções computa-

cionais em ambientes com hardware modesto utilizando tecnologias como o Kubernetes para

otimização de recursos em sistemas com capacidade computacional limitada. Esse trabalho é

particularmente interessante, pois explora as mesmas questões relacionadas ao uso de clusters

Kubernetes em máquinas de baixo custo, oferecendo perspectivas relacionadas aos desafios de

desempenho e eficiência.

O trabalho de Programming Group (GROUP, 2023) explora diferentes distribuições de

Kubernetes otimizadas para ambientes com recursos limitados, como o k3s, k0s e Microk8s,

destacando a importância dessas versões leves para a implementação de clusters em hardware

modesto. Essa pesquisa complementa a proposta deste trabalho, já que o uso de distribuições

otimizadas pode ser uma solução crucial para garantir o funcionamento eficiente do cluster,

mesmo em máquinas com pouca memória RAM e capacidade de processamento.

Outro estudo relevante é o de Learn Fast Make Things (MORSE, 2023), que discute

como transformar hardware antigo em clusters Kubernetes, utilizando recursos limitados de

maneira eficiente. Esse trabalho se aproxima diretamente do objetivo deste, ao sugerir métodos

de aproveitamento de hardware obsoleto para a criação de clusters, alinhando-se à proposta

de utilizar máquinas com poder computacional limitado para implementação de soluções esca-

láveis.

Esses trabalhos forneceram uma base teórica e prática sólida, que orientou a escolha

de tecnologias e estratégias para a implementação de clusters Kubernetes em hardware com

recursos limitados, contribuindo significativamente para o desenvolvimento deste trabalho.

18

4 MATERIAIS E MÉTODOS

Esta Seção descreve os materiais e métodos utilizados para a implantação e avaliação

de um cluster Kubernetes em computadores com poder computacional limitado. A Seção 4.1

detalha os componentes de hardware e software empregados, enquanto a Seção 4.2 apresenta

os testes realizados, procedimentos adotados para realização desses e as métricas coletadas

durante a execução.

4.1 Materiais

Os materiais utilizados estão organizados em duas categorias principais: hardware, que

abrange os computadores e equipamentos de rede, e software, que compreende as distribui-

ções de Kubernetes e ferramentas utilizadas para realizar os testes e monitoramento.

4.1.1 Hardware

As Especificações técnicas dos computadores que formaram o cluster pode ser obser-

vadas na tabela a seguir:

Tabela 1 – Especificações técnicas dos computadores.
Computador Núcleos CPU Clock CPU Cache CPU RAM Velocidade de Rede

Nó Plano de Controle/Trabalho 4 2.95 GHz 8 MB 4 GB 100 Mbps
Nó de Trabalho 1 4 3.0 GHz 12 MB 4 GB 100 Mbps
Nó de Trabalho 2 2 3.0 GHz 3 MB 4 GB 100 Mbps

Fonte: Elaborado pelo autor.

E as peças que formaram os computadores são:

Tabela 2 – Peças que compuseram os computadores.
Computador CPU Placa mãe RAM Disco Placa de Rede

Plano de Controle/Nó de Trabalho i7-870 bpc-hm55 kvr16n11/4 wd5000lpvx Onboard
Nó de Trabalho 1 e5450 g41m BMD34096M1333C9 wd5000lpvx Onboard
Nó de Trabalho 2 g2030 0xfwhv m378b5273eb0-ck0 st500dm002-1bd142 Onboard

Fonte: Elaborado pelo autor.

Sendo o nó de plano de controle atuando também como nó de trabalho e dois computa-

dores adicionais atuando apenas como nós de trabalho.

Além dos computadores, foi utilizado um switch de rede Encore do modelo enh916p-nwy

com fast ethernet (até 100 Megabits por segundo de velocidade) para interligar os dispositivos

e um computador configurado para servir como roteador.

19

4.1.2 Software

O software utilizado no desenvolvimento deste trabalho pode ser dividido em cinco cate-

gorias principais: distribuições de Kubernetes, componentes adicionais instalados no Kuberne-

tes, pacotes instalados nas máquinas, linguagem e tecnologias utilizadas na aplicação de teste

e ferramentas para desenvolvimento do script de testes.

As distribuições de Kubernetes utilizadas foram: k3s, MicroK8s e k0s que são melhores

descritas na Seção 2.3.2.

Componentes adicionais instalados no Kubernetes:

• MetalLB: Implementação de LB para ambientes bare metal, permitindo a distribuição

de tráfego entre os pods do cluster Kubernetes (CNCF, 2025a).

Os pacotes instalados nas máquinas que compuseram o cluster Kubernetes são:

• Debian 11: Sistema operacional baseado em Linux, conhecido por sua estabilidade

e segurança, utilizado como base para a instalação das distribuições de Kubernetes

(DEBIAN, 2024).

• sysstat: Conjunto de ferramentas para monitoramento de desempenho do sistema,

utilizado para coletar métricas de uso da CPU e memória (SYSSTAT, 2024).

• OpenSSH: Conjunto de ferramentas para acesso remoto seguro via SSH, do in-

glês Secure Shell , utilizado para administração e monitoramento dos nós do cluster

(OPENSSH, 2025).

A aplicação de teste foi desenvolvida utilizando as seguintes tecnologias:

• Docker: Plataforma de containers utilizada para empacotar a aplicação de teste e suas

dependências, garantindo portabilidade e consistência entre os ambientes (DOCKER,

2024).

• Node.js v22: Ambiente de execução JavaScript OpenSource utilizado no desenvolvi-

mento da aplicação de teste (NODE.JS, 2024).

• Express: Framework para Node.js que facilita a criação de aplicações web e Interface

de Programação de Aplicações (API, do inglês Application Programming Interface)s

RESTful (EXPRESS, 2024).

• Axios: Biblioteca Protocolo de Transferência de Hipertexto (HTTP, do inglês Hypertext

Transfer Protocol) utilizada para realizar as requisições entre as partes da aplicação

de teste (AXIOS, 2024).

As ferramentas utilizadas para o desenvolvimento do script são:

20

• Python 3.9: Linguagem utilizada na implementação do script, responsável tanto pela

coleta de dados via SSH quanto pela execução das requisições à aplicação (PYTHON

SOFTWARE FOUNDATION, 2025).

• paramiko: Biblioteca Python para conexão SSH, utilizada no script para acessar re-

motamente os servidores e coletar métricas de uso dos recursos (PARAMIKO, 2024).

• httpx: Biblioteca HTTP assíncrona para Python, utilizada no script para gerar requisi-

ções concorrentes com controle preciso de tempo e volume (ENCODE, 2024).

4.2 Métodos

Nesta Seção são descritos os testes e métricas executados para avaliar o desempenho

do cluster Kubernetes implementado em máquinas com poder computacional limitado.

4.2.1 Testes de Interação do cluster

Os testes descritos nesta Seção tiveram como objetivo avaliar o desempenho geral do

cluster Kubernetes em diferentes cenários de uso. Os algoritmos implementados para os testes

foram:

• Implementação do algoritmo do cálculo do 𝑛-ésimo número da série de Fibonacci

(CORMEN et al., 2024) usando requisições HTTP para formar uma recursão, assim

simulando uma grande quantidade de requisições simultâneas e distribuindo a carga

entre os nós do cluster ao passar as requisições pelo LB.

A Figura 2 ilustra o ciclo de vida de uma requisição para calcular o dígito 𝑛 da sequência

de Fibonacci. O processo inicia-se com o cliente enviando a requisição ao LB, que a

encaminha para um dos pods do cluster. O pod recebe a requisição e, por meio do

container responsável pelo algoritmo, realiza chamadas recursivas ao próprio Service

exposto, solicitando os valores de 𝑛−1 e 𝑛−2 — cada chamada passando novamente

pelo LB assim distribuindo a carga entre os nós. Esse fluxo se repete até atingir os

casos base (𝑛 = 1 ou 𝑛 = 2), que retornam 1. Por fim, os resultados das chamadas

recursivas são somados e o valor final é devolvido ao cliente.

A abordagem utilizada baseia-se na definição recursiva da sequência de Fibonacci :

𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖(𝑛) =

⎧⎪⎨⎪⎩1, se 𝑛 ≤ 2

𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖(𝑛− 1) + 𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖(𝑛− 2), senão
(1)

21

Figura 2 – Ciclo de vida de um requisição
do número de Fibonacci.

Fonte: Autoria própria (2025).

Essa definição gera uma grande quantidade de requisições simultâneas, simulando um

cenário de alto tráfego no cluster. O objetivo desse teste é avaliar como o sistema se

comporta sob cargas intensas, identificando possíveis gargalos e limitações de desem-

penho.

• Desenvolvimento de um algoritmo de ordenação utilizando o método de ordenação

Bubble Sort (BIGGAR; GREGG, 2005) para processar listas invertidas de diferentes

tamanhos. Esse teste visou um processo computacional relativamente pesado e não

distribuído, assim sendo cada requisição era processada em um dos nós do cluster

sem distribuição de carga.

Esses experimentos permitem avaliar o desempenho do cluster em situações diversas,

desde alto tráfego de requisições até cargas computacionalmente intensivas, identificando pos-

síveis gargalos e oportunidades para otimização.

A aplicação de teste foi implantada no cluster Kubernetes utilizando pods. Cada nó

continha um pod que continha a aplicação de teste, permitindo a distribuição das requisições

entre os nós do cluster.

4.2.2 Ferramenta de automação dos testes

Para padronizar os testes e garantir reprodutibilidade, foi desenvolvido um script em

Python 3.9. Esse script teve como propósito automatizar a descoberta da carga máxima supor-

22

tada por cada distribuição Kubernetes, considerando o tempo médio de resposta como critério

de aceitação, coletar métricas dos computadores usando SSH e armazenar os dados em um

arquivo de Notação de Objetos JavaScript (JSON, do inglês JavaScript Object Notation) dos

computadores e do tempo de resposta das requisições para posterior analise.

A lógica implementada foi dividida em duas etapas, executadas em rodadas. Cada ro-

dada é definida por uma carga 𝐶, uma taxa de requisições por segundo 𝑅 e pela função

MédiaTempoDeResposta(𝐶,𝑅), que retorna o tempo médio de resposta (em segundos) para

a combinação (𝐶,𝑅). Cada rodada consistiu de 30 segundos de geração de requisições segui-

dos por 30 segundos de pausa.

• Etapa 1 – Descoberta da carga máxima para uma requisição por segundo: O script

incrementava progressivamente a carga 𝐶 começando em 1 (número da sequência de

Fibonacci sendo 𝐷𝑖𝑔𝑖𝑡𝑜𝐷𝑒𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖(𝐶) = 𝐶 ou itens para ordenação com Bubble

Sort sendo 𝑇𝑎𝑚𝑎𝑛ℎ𝑜𝐷𝑜𝑉 𝑒𝑡𝑜𝑟(𝐶) = 2𝐶) em cada rodada, inicialmente mantendo

a taxa de requisições constante em 𝑅 = 1. O processo continuava até que o tempo

médio de resposta 𝑇 ultrapassasse 2 segundos. Sendo a carga que ultrapassou o

limite considerada 𝐶 para a próxima fase. Essa etapa pode ser formalizada da seguinte

maneira:

MaiorCarga(𝐶) =

⎧⎪⎨⎪⎩𝐶, se MédiaTempoDeResposta(𝐶,1) > 2 s

MaiorCarga(𝐶 + 1), senão

(2)

• Etapa 2 – Determinação da taxa máxima de requisições para diferentes cargas:

Para os valores de carga 𝐶 − 1, 𝐶 − 2 e 𝐶 − 3, determinado na Etapa 1, o script

definia a quantidade de requisições 𝑅 com 𝑅 começando em 1 e dobrando a cada

rodada até que o tempo médio de resposta 𝑇 excedesse 2 segundos. Em seguida, era

realizada uma busca binária para identificar o maior valor de 𝑅 que mantivesse o tempo

de resposta médio abaixo do limite estabelecido. Essa etapa pode ser formalizada da

seguinte maneira:

MaiorTaxa(𝐶,𝑅) =

⎧⎪⎨⎪⎩BuscaBinária(𝑅), se MédiaTempoDeResposta(𝐶,𝑅) > 2 s

MaiorTaxa(𝐶, 2𝑅), senão

(3)

O tempo de resposta médio de 2 segundos foi escolhido como critério de aceitação

para garantir que o sistema mantivesse um desempenho aceitável sob carga, evitando tempos

de espera excessivos que poderiam comprometer a experiência do usuário como descrito por

(Jakob Nielsen, 2025).

23

Durante a execução dos testes, após a determinação de 𝐶−1, 𝐶−2 e 𝐶−3 e de suas

respectivas taxas máximas de requisições, as métricas dos servidores — como uso de CPU e

RAM — foram coletadas a intervalos regulares de 0,5 segundos. Paralelamente, os dados das

requisições, incluindo o tempo de resposta de cada chamada, foram registrados e armazena-

dos para posterior análise, permitindo uma visão detalhada e contínua do comportamento do

sistema sob carga.

Esse procedimento de testes foi inicialmente executado em uma distribuição de Kuber-

netes escolhida como referência. Os parâmetros de carga (𝐶) e de taxa de requisições má-

xima (𝑅) determinados nessa execução foram reproduzidos nas demais distribuições, mantendo

constantes a duração das rodadas e os períodos de pausa, mas ignorando o critério de acei-

tação (tempo médio de resposta maior ou igual à 2 segundos). Para cada distribuição, o script

automatizou as etapas descritas, coletando e registrando de forma padronizada as métricas de

tempo de resposta e o uso de recursos (CPU e RAM), o que permitiu comparações diretas e

isentas de variabilidade humana.

Os testes foram executados por um computador externo ao cluster, conectado direta-

mente ao switch, de modo a não interferir nos recursos computacionais dos nós do sistema.

Esse script também foi responsável pela coleta e armazenamento das métricas de tempo de

resposta e, em conjunto com o sysstat, pelo monitoramento de uso de CPU e RAM via SSH.

Essa automação aumentou o rigor experimental ao padronizar a geração de carga, a

coleta de métricas e o registro temporal dos eventos. O script controla de forma determinística

as rodadas de teste (duração, períodos de pausa e valores de carga), realiza a amostragem

das métricas de CPU e RAM em intervalos regulares de 0,5 s via SSH e grava todos os re-

sultados em arquivos JSON juntamente com metadados (data e hora, nó, carga e parâmetros

de execução). Essa padronização reduz variações introduzidas pela execução manual, facilita

a reprodutibilidade dos experimentos e possibilita análises estatísticas sobre os dados brutos.

A implementação completa do script, instruções de execução e exemplos dos dados coletados

estão disponíveis no Apêndice A.

4.2.3 Métricas

Durante os testes, foram coletadas as seguintes métricas para avaliar o desempenho do

sistema:

• Consumo de memória RAM: Foi monitorada a utilização de memória pelas máquinas

individualmente e pelo cluster como um todo, identificando o impacto das diferentes

cargas de trabalho.

• Utilização de processamento (CPU): Acompanhamento da carga de processamento

em cada máquina e no cluster com o objetivo de detectar possíveis gargalos.

24

• Tempo de resposta: Medição do tempo necessário para as aplicações implantadas no

cluster processarem as requisições enviadas, avaliando a eficiência do sistema.

25

5 RESULTADOS EXPERIMENTAIS

Esta seção apresenta os resultados obtidos durante a execução dos testes no cluster

Kubernetes implementado com hardware de poder computacional limitado. O cluster operou

com três nós (um nó de plano de controle/trabalho e dois nós somente de trabalho). As cargas

e requisições máximas foram determinadas com a metodologia explicada na Seção 4.2.1 e foi

escolhida arbitrariamente a distribuição k3s como referência. Adotou-se um critério de aceitação

de tempo de resposta médio inferior a 2 s para definir o ponto em que o sistema ainda é consi-

derado aceitável em termos de usabilidade e capacidade de atendimento; esse limite baseia-se

em estudos de percepção de latência do usuário (Jakob Nielsen, 2025) e funciona como um

parâmetro prático para comparar distribuições sob as mesmas restrições. Nas análises, os re-

sultados foram avaliados considerando as métricas de CPU, RAM e desempenho de rede, de

modo a correlacionar a experiência de resposta com a eficiência no uso de recursos do cluster.

5.1 Resultados por Tipo de Teste

Os dados coletados durante os testes de desempenho do cluster estão organizados nas

tabelas a seguir de acordo com o tipo de carga computacional. Na Tabela 3, estão dispostos os

resultados obtidos com o algoritmo da Série de Fibonacci, onde o campo “𝑛” indica o número

da sequência a ser calculado. Já a Tabela 4 apresenta os dados referentes ao teste de ordena-

ção com o algoritmo Bubble Sort, sendo o campo “Tamanho do vetor” o expoente aplicado na

geração das listas inversamente ordenadas (2𝑛).

Tabela 3 – Dados coletados durante a execução do teste de Fibonacci.
Distribuição 𝑛 Tempo de resposta médio Requisições/segundo

k0s 18 2.870s 1
k3s 18 1.413s 1

microk8s 18 3.303s 1
k0s 17 2.049s 2
k3s 17 1.482s 2

microk8s 17 3.705s 2
k0s 16 3.024s 3
k3s 16 2.021s 3

microk8s 16 3.044s 3

Fonte: Elaborado pelo autor

A Tabela 4 apresenta os dados coletados durante a execução do algoritmo de ordenação

Bubble Sort.

26

Tabela 4 – Dados coletados durante execução do teste de Bubble Sort.
Distribuição Tamanho do vetor Tempo de resposta médio Requisições/segundo

k0s 215 1.456s 4
k3s 215 1.472s 4

microk8s 215 1.480s 4
k0s 214 0.459s 22
k3s 214 0.497s 22

microk8s 214 0.438s 22
k0s 213 0.102s 38
k3s 213 0.111s 38

microk8s 213 0.107s 38

Fonte: Elaborado pelo autor

5.2 Análise de Desempenho

A análise dos resultados demonstra diferenças significativas no desempenho e na efici-

ência de recursos das distribuições Kubernetes sob cargas de trabalho distintas.

5.2.1 Série de Fibonacci (Processamento distribuído)

O teste de Fibonacci (Tabela 3), que é intensivo em CPU e demanda paralelismo, evi-

denciou que o desempenho está diretamente ligado à capacidade da distribuição de balancear

a carga entre os nós.

• Quanto ao desempenho a distribuição k3s para a carga de 𝑛 = 18, o k3s(1,413s) foi

o único capaz de atender a 1 Requisições por Segundo (RPS, do inglês Requests Per

Second) dentro do limite aceitável de 2s, enquanto k0s e MicroK8s não conseguiram

atender a essa carga dentro do limite.

• Para a carga de 𝑛 = 17, o k3s (1,482s) novamente superou as outras distribuições,

atendendo a 2 RPS dentro do limite aceitável, enquanto o k0s (2,049s) ficou ligeira-

mente acima do limite e o MicroK8s (3,705s) não conseguiu atender a essa carga.

• Na carga de 𝑛 = 16, o k3s (2,021s) manteve a liderança em desempenho, atendendo a

3 RPS próximo ao limite aceitável, seguido pelo k0s (3,024s) e pelo MicroK8s (3,044s),

ambos incapazes de atender a essa carga dentro do limite.

A distribuição k3s, provou ser a opção mais eficiente para um grande número de re-

quisições simultâneas de baixa complexidade no contexto deste trabalho, especialmente em

cenários de alta concorrência.

A análise integrada dos recursos de CPU e RAM (Figuras 3 e 4) revela a correlação

direta entre o padrão de uso de recursos e o desempenho observado no teste de Fibonacci.

O k3s, que obteve o melhor tempo de resposta (1,413s para 𝑛 = 18), demonstrou uma estra-

tégia equilibrada: consumo intermediário de CPU em todos os nós e maior alocação de RAM

especialmente no nó de plano de controle/trabalho. Essa maior alocação de memória permite

27

que o k3s mantenha estruturas de dados otimizadas para o escalonamento e gerenciamento de

tarefas paralelas, resultando em distribuição mais eficiente da carga entre os nós do cluster.

Figura 3 – Comparação de Uso de CPU por Nó (Fibonacci número 18).

Fonte: Elaborado pelo autor

Em contraste, o k0s apresentou o menor consumo tanto de CPU quanto de RAM em to-

dos os nós, mas obteve tempo de resposta 103% maior que o k3s (2,870s versus 1,413s). Essa

economia de recursos indica uma abordagem conservadora na distribuição de carga: ao utilizar

menos memória para gerenciamento, o k0s limita sua capacidade de paralelizar eficientemente

as requisições, resultando em menor aproveitamento da capacidade computacional disponível

no cluster. Essa característica torna o k0s adequado para ambientes com severas restrições de

RAM, porém às custas de desempenho em cargas paralelas.

A distribuição MicroK8s exibiu o padrão mais ineficiente: maior consumo de CPU em

todos os nós e alto consumo de RAM nos nós de trabalho, porém com o pior desempenho

(3,303s — 134% mais lento que o k3s). Esse comportamento sugere sobrecarga excessiva

de gerenciamento, onde o uso elevado de recursos não se traduz em melhor distribuição de

tarefas. A combinação de alta utilização de CPU com baixo desempenho indica ineficiências

arquiteturais, possivelmente relacionadas a processos de orquestração que competem com as

aplicações pelos recursos computacionais.

Portanto, para cargas de trabalho paralelas intensivas em CPU, o investimento de me-

mória RAM no plano de controle para gerenciamento eficiente do escalonamento é determinante

para o desempenho. O k3s demonstra o melhor equilíbrio entre uso de recursos e capacidade

de resposta, enquanto o k0s prioriza economia de recursos em detrimento do desempenho, e o

MicroK8s apresenta ineficiência na conversão de recursos em ganhos de desempenho.

28

Figura 4 – Comparação de Uso de RAM por Nó (Fibonacci número 18).

Fonte: Elaborado pelo autor

5.2.2 Bubble Sort (Processamento Sequencial)

Os resultados do algoritmo Bubble Sort (Tabela 4), de natureza sequencial, indicaram

um cenário diferente, dominado pela limitação do hardware e otimizações do consumo de re-

cursos para processar cada tarefa individualmente.

• Na carga mais pesada (215 elementos), todas as distribuições apresentaram desempe-

nho semelhante, com o k0s (1,456s), k3s (1,472s) e MicroK8s (1,480s) respondendo

a 4 RPS.

• Na carga intermediária (214 elementos), o MicroK8s (0,438s) superou o k0s (0,459s)

e o k3s (0,497s), todos respondendo a 22 RPS. Porém todas as distribuições tiveram

tempos de resposta muito próximos.

• Na carga mais leve (213 elementos), o k0s (0,102s) liderou novamente, seguido pelo

MicroK8s (0,107s) e pelo k3s (0,111s), todos respondendo a 38 RPS. Novamente, os

tempos de resposta foram muito próximos entre as distribuições.

Para algoritmos computacionalmente intensivos e sequenciais, como o Bubble Sort, o

k0s demonstrou ser ligeiramente mais eficiente, embora as diferenças de desempenho entre as

distribuições fossem mínimas.

A análise conjunta dos recursos de CPU (Figura 5) e RAM (Figura 6) durante a execu-

ção do Bubble Sort com carga máxima (215 elementos) revela padrões distintos que explicam

por que, apesar dos tempos de resposta similares (k0s: 1,456s; k3s: 1,472s; MicroK8s: 1,480s

29

— diferença máxima de apenas 1,6%), as estratégias de uso de recursos diferem significativa-

mente.

Figura 5 – Comparação de Uso de CPU por Nó (Bubble Sort 215 items no vetor).

Fonte: Elaborado pelo autor

O k0s apresentou o perfil mais eficiente em termos de recursos, combinando o menor

consumo de RAM em todos os nós com uso de CPU equivalente ao k3s, resultando no me-

lhor tempo de resposta. Essa eficiência demonstra que, para cargas sequenciais onde não há

benefício em paralelização, a economia de memória não prejudica o desempenho. O k0s oti-

miza a alocação de recursos ao evitar estruturas de gerenciamento supérfluas para este tipo de

carga, tornando-se a opção ideal para ambientes com restrições severas de RAM que executam

predominantemente tarefas sequenciais.

Em contraste, o k3s exibiu o maior consumo de RAM em todos os nós (especialmente

no plano de controle/trabalho), apesar de manter uso de CPU similar ao k0s. Essa alocação

adicional de memória, que foi vantajosa no teste de Fibonacci, não gerou benefícios no Bubble

Sort — o tempo de resposta foi apenas 1,1% superior ao k0s. Isso indica que a estratégia do

k3s de investir em memória para otimizar distribuição de carga é eficaz apenas em cenários

com paralelismo real, representando sobrecarga desnecessária em processamento sequencial.

A distribuição MicroK8s apresentou padrão intermediário de consumo de RAM e uso

desbalanceado de CPU, com menor utilização no plano de controle/trabalho porém maior no

nó de trabalho 2. Esse desbalanceamento, embora não tenha impactado significativamente

o tempo de resposta devido à natureza não-paralela da carga, evidencia ineficiências no es-

calonamento: idealmente, em cargas sequenciais, a distribuição de uso de CPU deveria ser

homogênea entre os nós. O tempo de resposta ligeiramente inferior (1,480s) apesar do uso

30

Figura 6 – Comparação de Uso de RAM por Nó (Bubble Sort 215 items no vetor).

Fonte: Elaborado pelo autor

equilibrado de recursos sugere que a sobrecarga de gerenciamento do MicroK8s permanece

presente mesmo em cenários sequenciais.

Em síntese, para cargas sequenciais intensivas em CPU, a eficiência no uso de RAM

torna-se mais relevante que a capacidade de distribuição, pois não há benefício em parale-

lização. O k0s demonstra ser a distribuição mais adequada ao combinar menor footprint de

memória com desempenho equivalente, enquanto o k3s apresenta sobrecarga de RAM sem

ganhos proporcionais. Esses resultados contrastam diretamente com o teste de Fibonacci, evi-

denciando que a escolha da distribuição deve considerar primordialmente a natureza da carga

de trabalho (paralela versus sequencial) e as restrições de recursos do ambiente.

31

6 CONSIDERAÇÕES FINAIS

Este Trabalho teve como objetivo principal avaliar a viabilidade e o desempenho de um

cluster Kubernetes em computadores com poder computacional limitado. Os resultados confir-

maram a viabilidade técnica da proposta, demonstrando que é possível obter um desempenho

satisfatório em aplicações stateless ao reutilizar hardware obsoleto.

O desempenho superior foi alcançado em aplicações que permitem o uso intensivo de

requisições paralelas e distribuem a carga de trabalho de forma eficiente (Teste Fibonacci),

com destaque para o k3s. Em contraste, em tarefas sequenciais e dependentes da CPU (Teste

Bubble Sort), o desempenho foi limitado pelas características do hardware, e as diferenças

entre as distribuições foram mínimas em termos de RPS, mas notáveis na eficiência de uso dos

recursos.

Os testes verificaram empiricamente que clusters Kubernetes dentro dos testes realiza-

dos neste trabalho são mais eficazes ao lidar com múltiplas requisições de baixa complexidade

do que com poucas requisições de alta carga computacional. Isso ocorre porque o Kubernetes

é projetado para distribuir requisições entre os nós, mas não para paralelizar o processamento

interno de uma única requisição, salvo em aplicações com chamadas internas entre containers.

Conclui-se que a proposta de reutilizar hardware limitado em ambientes de cluster repre-

senta uma alternativa promissora do ponto de vista econômico e sustentável. Como sugestão

para trabalhos recomenda-se a validação do desempenho em cenários mais complexos, como

o uso de bancos de dados distribuídos nos testes ou a implementação de scripts de teste em

linguagens compiladas para reduzir a interferência do tempo de execução do script na análise

de desempenho.

32

REFERÊNCIAS

APPVIA. Why is Kubernetes Called K8s? 2024. Disponível em: https://www.appvia.io/blog/
why-is-kubernetes-called-k8s. Acesso em: 27 set. 2025.

AXIOS. Axios - Promise based HTTP client for the browser and node.js. 2024. Disponível
em: https://axios-http.com/. Acesso em: 10 set. 2025.

BIGGAR, P.; GREGG, D. Sorting in the Presence of Branch Prediction and Caches. Dublin,
Ireland, 2005. Disponível em: https://www.scss.tcd.ie/publications/tech-reports/reports.05/
TCD-CS-2005-57.pdf.

CANONICAL. MicroK8s Documentation. 2024. Disponível em: https://microk8s.io/docs.
Acesso em: 18 nov. 2024.

CNCF. Cluster Architecture. Online, 2024. Disponível em: https://kubernetes.io/docs/concepts/
architecture/. Acesso em: 18 nov. 2024.

CNCF. Service. 2024. Disponível em: https://kubernetes.io/docs/concepts/services-networking/
service/. Acesso em: 8 set. 2025.

CNCF. MetalLB. 2025. Disponível em: https://metallb.io/. Acesso em: 10 set. 2025.

CNCF. Virtual IPs and Service Proxies. 2025. Disponível em: https://kubernetes.io/docs/
reference/networking/virtual-ips/. Acesso em: 10 set. 2025.

CNCF . Overview. Online, 2024. Disponível em: https://kubernetes.io/docs/concepts/overview/.
Acesso em: 18 nov. 2024.

CNCF . Pods. Online, 2024. Disponível em: https://kubernetes.io/docs/concepts/workloads/
pods/. Acesso em: 20 nov. 2024.

CORMEN, T. H. et al. Algoritmos. 4. ed.. ed. Rio de Janeiro: GEN LTC, 2024.
ISBN 9788595159914. Disponível em: https://app.minhabiblioteca.com.br/reader/books/
9788595159914/. Acesso em: 27 set. 2025.

DEBIAN. Debian – Reasons to use Debian. 2024. Accessed: 20 Nov. 2024. Disponível em:
https://www.debian.org/intro/why_debian.

DOCKER. Docker. 2024. Disponível em: https://www.docker.com/. Acesso em: 20 nov. 2024.

ENCODE. HTTPX. 2024. Disponível em: https://www.python-httpx.org/. Acesso em: 10 set.
2025.

EXPRESS. Express - Node.js web application framework. 2024. Disponível em:
https://expressjs.com/. Acesso em: 10 set. 2025.

GEEKSFORGEEKS. What is Load Balancer? 2025. Disponível em: https://www.
geeksforgeeks.org/system-design/what-is-load-balancer-system-design/. Acesso em: 10 set.
2025.

GOOGLE . What Are Containers? 2024. Disponível em: https://cloud.google.com/learn/
what-are-containers. Acesso em: 6 nov. 2024.

GOOGLE . What is container orchestration? 2024. Disponível em: https://cloud.google.com/
discover/what-is-container-orchestration?hl=en. Acesso em: 18 nov. 2024.

https://www.appvia.io/blog/why-is-kubernetes-called-k8s
https://www.appvia.io/blog/why-is-kubernetes-called-k8s
https://axios-http.com/
https://www.scss.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-57.pdf
https://www.scss.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-57.pdf
https://microk8s.io/docs
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://metallb.io/
https://kubernetes.io/docs/reference/networking/virtual-ips/
https://kubernetes.io/docs/reference/networking/virtual-ips/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://app.minhabiblioteca.com.br/reader/books/9788595159914/
https://app.minhabiblioteca.com.br/reader/books/9788595159914/
https://www.debian.org/intro/why_debian
https://www.docker.com/
https://www.python-httpx.org/
https://expressjs.com/
https://www.geeksforgeeks.org/system-design/what-is-load-balancer-system-design/
https://www.geeksforgeeks.org/system-design/what-is-load-balancer-system-design/
https://cloud.google.com/learn/what-are-containers
https://cloud.google.com/learn/what-are-containers
https://cloud.google.com/discover/what-is-container-orchestration?hl=en
https://cloud.google.com/discover/what-is-container-orchestration?hl=en

33

GROUP, P. Lightweight Kubernetes Distributions. 2023. Disponível em: https://
programming-group.com/assets/pdf/papers/2023_Lightweight-Kubernetes-Distributions.pdf.
Acesso em: 20 nov. 2024.

IBM. What is Cluster Computing? 2024. Disponível em: https://www.ibm.com/think/topics/
cluster-computing. Acesso em: 18 nov. 2024.

Jakob Nielsen. Response Times: The Three Important Limits. 2025. Disponível em:
https://www.nngroup.com/articles/response-times-3-important-limits/. Acesso em: 16 out. 2025.

K0S PROJECT. K0s Documentation. 2024. Disponível em: https://k0sproject.io/. Acesso em:
20 nov. 2024.

MONTEIRO, E. R. et al. DevOps. SAGAH, 2021. 154 p. ISBN 9786556901725. Disponível em:
https://app.minhabiblioteca.com.br/reader/books/9786556901725/. Acesso em: 6 nov. 2024.

MORSE, G. How to turn your old hardware into a Kuberne-
tes cluster. 2023. Disponível em: https://learnfastmakethings.com/p/
how-to-turn-your-old-hardware-into-a-kubernetes-cluster-129d17aa8704. Acesso em:
20 nov. 2024.

NODE.JS. Node.js v22.19.0 Documentation. 2024. Disponível em: https://nodejs.org/docs/
latest-v22.x/api/documentation.html. Acesso em: 10 set. 2025.

OPENSSH. OpenSSH: OpenSSH. 2025. Disponível em: https://www.openssh.com/. Acesso
em: 10 set. 2025.

PARAMIKO. Welcome to Paramiko! 2024. Disponível em: https://www.paramiko.org/. Acesso
em: 10 set. 2025.

PYTHON SOFTWARE FOUNDATION. Python Documentation. 2025. Disponível em:
https://docs.python.org/3/. Acesso em: 10 set. 2025.

Rancher Labs . K3s Documentation. 2024. Disponível em: https://k3s.io/. Acesso em: 20 nov.
2024.

SILVA, J. Implementando um sistema de conteinerização com Kubernetes usando GitOps.
2022. Trabalho de Conclusão de Curso (Curso de Ciência da Computação) – Universidade
Federal de Pernambuco, Recife. Disponível em: https://www.cin.ufpe.br/~tg/2022-1/tg_CC/tg_
pgrr.pdf. Acesso em: 20 nov. 2024.

SYSSTAT. sysstat. 2024. Disponível em: https://github.com/sysstat/sysstat. Acesso em: 10 set.
2025.

https://programming-group.com/assets/pdf/papers/2023_Lightweight-Kubernetes-Distributions.pdf
https://programming-group.com/assets/pdf/papers/2023_Lightweight-Kubernetes-Distributions.pdf
https://www.ibm.com/think/topics/cluster-computing
https://www.ibm.com/think/topics/cluster-computing
https://www.nngroup.com/articles/response-times-3-important-limits/
https://k0sproject.io/
https://app.minhabiblioteca.com.br/reader/books/9786556901725/
https://learnfastmakethings.com/p/how-to-turn-your-old-hardware-into-a-kubernetes-cluster-129d17aa8704
https://learnfastmakethings.com/p/how-to-turn-your-old-hardware-into-a-kubernetes-cluster-129d17aa8704
https://nodejs.org/docs/latest-v22.x/api/documentation.html
https://nodejs.org/docs/latest-v22.x/api/documentation.html
https://www.openssh.com/
https://www.paramiko.org/
https://docs.python.org/3/
https://k3s.io/
https://www.cin.ufpe.br/~tg/2022-1/tg_CC/tg_pgrr.pdf
https://www.cin.ufpe.br/~tg/2022-1/tg_CC/tg_pgrr.pdf
https://github.com/sysstat/sysstat

34

GLOSSÁRIO

stateless termo em inglês que significa "sem estado". Em computação, refere-se a sistemas ou

aplicações que não mantêm informações sobre o estado ou contexto entre diferentes in-

terações ou sessões. Cada requisição é tratada de forma independente, sem depender

de dados armazenados de interações anteriores. 11

APÊNDICES

36

APÊNDICE A – Script de teste e aplicação de teste

37

Script de teste que implementa a metodologia de teste e aplicação de teste que imple-

menta os algoritmos de teste podem ser acessados em: https://github.com/FaboBorgesLima/

cluster-tester/releases/tag/v2

https://github.com/FaboBorgesLima/cluster-tester/releases/tag/v2
https://github.com/FaboBorgesLima/cluster-tester/releases/tag/v2

	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	1.2 Estrutura do trabalho

	2 Referencial teórico
	2.1 Clusters
	2.2 Containers
	2.2.1 Orquestração de containers

	2.3 Kubernetes
	2.3.1 Balanceamento de Carga
	2.3.2 Distribuições do Kubernetes

	2.4 Computadores com poder computacional limitado

	3 Trabalhos Relacionados
	4 Materiais e Métodos
	4.1 Materiais
	4.1.1 Hardware
	4.1.2 Software

	4.2 Métodos
	4.2.1 Testes de Interação do cluster
	4.2.2 Ferramenta de automação dos testes
	4.2.3 Métricas

	5 Resultados Experimentais
	5.1 Resultados por Tipo de Teste
	5.2 Análise de Desempenho
	5.2.1 Série de Fibonacci (Processamento distribuído)
	5.2.2 Bubble Sort (Processamento Sequencial)

	6 Considerações Finais
	Referências
	Glossário
	Apêndices
	A Script de teste e aplicação de teste

