UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA

FLAVIO BORGES DE LIMA

IMPLANTACAO DE CLUSTER KUBERNETES EM COMPUTADORES COM
PODER COMPUTACIONAL LIMITADO

GUARAPUAVA
2025

FLAVIO BORGES DE LIMA

IMPLANTAGCAO DE CLUSTER KUBERNETES EM COMPUTADORES COM
PODER COMPUTACIONAL LIMITADO

Deployment of Kubernetes Cluster for Computer Network with Limited

Computational Power

Trabalho de Conclusao de Curso de Graduagao
apresentado como requisito para obtencéo do
titulo de Tecndlogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnolégica Federal do Parana.

Orientador: Prof. Dr. Hermano Pereira

Coorientador: Profé. Dr2. Sediane Carmem
Lunardi Hernandes

GUARAPUAVA
2025

Esta licenca permite compartilhamento, remixe, adaptagéo e criagdo a partir do traba-

|@ @ | Iho, mesmo para fins comerciais, desde que sejam atribuidos créditos ao(s) autor(es).

Conteudos elaborados por terceiros, citados e referenciados nesta obra ndo sao co-
4.0 Internacional bertos pela licenga.

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

FLAVIO BORGES DE LIMA

IMPLANTAGAO DE CLUSTER KUBERNETES EM COMPUTADORES COM
PODER COMPUTACIONAL LIMITADO

Trabalho de Conclusao de Curso de Graduacgao
apresentado como requisito para obtengcao do
titulo de Tecndlogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnolégica Federal do Parana.

Data de aprovagao: 26/novembro/2025

Hermano Pereira
Doutor
Universidade Tecnoldgica Federal do Parana

Sediane Carmem Lunardi Hernandes
Doutora
Universidade Tecnoldgica Federal do Parana

William Alberto Cruz Castaneda
Doutor
Universidade Tecnoldgica Federal do Parana

GUARAPUAVA
2025

AGRADECIMENTOS

Certamente estes paragrafos nao irdo atender a todas as pessoas que fizeram parte
dessa importante fase de minha vida. Portanto, desde ja peco desculpas aquelas que nao estao
presentes entre essas palavras pois foram muitas, mas elas podem estar certas que fazem parte
do meu pensamento e de minha gratidao.

Agradeco ao meu orientador Prof. Dr. Hermano Pereira e a minha coorientadora Prof2.
Dr2. Sediane Carmem Lunardi Hernandes pela sabedoria, conhecimento e paciéncia enorme
com que me guiou nesta trajetoria.

Agradeco aos meus pais (Jaqueline e Marcio), irmao (Angelo Gabriel) e demais familia-
res.

A todos os alunos e professores da UTFPR que me apoiaram e incentivaram durante
este percurso.

Em especial quero agradecer ao projeto de extensao Tecnolixo por fornecer o hardware
utilizado no trabalho. Também gostaria de agradecer aos participantes do projeto de extensao
Asimov, em especial ao Daniel Ahyub Lacerda, por ajudar na manuteng¢ao de alguns dos com-
putadores.

Enfim, a todos os que por algum motivo contribuiram para a realizagdo desta pesquisa.

RESUMO

Este trabalho propde uma alternativa econémica, sustentavel e funcional para a reutilizagéo
de hardware com recursos computacionais limitados, por meio da implantacdo de um cluster
Kubernetes. Foram avaliadas trés distribuicbes otimizadas da ferramenta — k3s, kOs e
MicroK8s — instaladas em computadores antigos, com o objetivo de analisar o desempenho
sob diferentes cargas de trabalho. Os experimentos incluiram aplicagbes com requisicdes
concorrentes e tarefas sequenciais intensivas em CPU. Os resultados indicam que o uso
dessas distribuicbes em ambientes com restricoes de recursos € viavel, especialmente em
cenarios com aplicacdes distribuidas leves. A proposta demonstrou potencial para uso em
contextos educacionais, laboratoriais e projetos de baixo custo, destacando-se como uma

solugao pratica para o reaproveitamento de equipamentos obsoletos.

Palavras-chave: kubernetes; clusters; recursos limitados; computacao distribuida; otimizagao

de desempenho.

ABSTRACT

This work presents an economical, sustainable, and functional proposal for reusing compu-
ters with limited computational power by deploying a Kubernetes cluster. Three lightweight
distributions — k3s, kOs, and MicroK8s — were tested on outdated machines to assess their
performance under different workloads. The experiments involved applications with concurrent
requests and sequential, CPU-intensive tasks. The results showed that these distributions
are viable for managing lightweight distributed applications in constrained environments. The
proposed solution demonstrates potential for educational and experimental contexts, standing

out as a practical and low-cost alternative for repurposing obsolete hardware.

Keywords: kubernetes; clusters; limited resources; distributed computing; performance optimi-

zation.

LISTA DE FIGURAS

Figura 1 — Balanceamento de carga usando o Balanceador de Carga (LB, do inglés
Load Balancer) no Kubernetes. 15
Figura2 - Ciclo de vida de um requisicdao do niumero de Fibonacci. 21
Figura3 — Comparacao de Uso de Unidade de Processamento Central (CPU, do
inglés Central Processing Unit) por N6 (Fibonacci numero 18). 27
Figura4 — Comparacao de Uso de Memoria de Acesso Aleatério (RAM, do inglés
Random Access Memory) por N6 (Fibonacci niumero18). 28
Figura5 — Comparacéo de Uso de CPU por N6 (Bubble Sort 2'° items no vetor). . 29

Figura 6 Comparacéo de Uso de RAM por N6 (Bubble Sort 2'° items no vetor). . 30

Siglas

API

ARP

BGP
CPU
GB
HA
HPC
HTTP

loT

JSON
L2
LAN
LB
(ON]
(OR]

RAM
RPS
SSH

Acronimos

K8s

LISTA DE ABREVIATURAS E SIGLAS

Interface de Programacao de Aplicacbes (API, do inglés Application Program-
ming Interface)

Protocolo de Resolugao de Enderegos (ARP, do inglés Address Resolution Pro-
tocol)

Protocolo de Gateway de Fronteira (BGP, do inglés Border Gateway Protocol)
Unidade de Processamento Central (CPU, do inglés Central Processing Unit)
Gigabyte (GB)

Alta Disponibilidade (HA, do inglés High Availability)

Computacao de Alta Performance (HPC, do inglés High-Performance Computing)
Protocolo de Transferéncia de Hipertexto (HTTP, do inglés Hypertext Transfer
Protocol)

Internet das Coisas (loT, do inglés Internet of Things)

Protocolo de Internet (IP, do inglés Internet Protocol)

Notacao de Objetos JavaScript (JSON, do inglés JavaScript Object Notation)
Camada 2 (L2, do inglés Layer 2)

Rede de Area Local (LAN, do inglés Local Area Network)

Balanceador de Carga (LB, do inglés Load Balancer)

Sistema Operacional (OS, do inglés Operating System)

Modelo de Interconexdo de Sistemas Abertos (OSI, do inglés Open Systems
Interconnection)

Memoria de Acesso Aleatério (RAM, do inglés Random Access Memory)
Requisicdes por Segundo (RPS, do inglés Requests Per Second)

SSH, do inglés Secure Shell

k8s é uma abreviacdo comum para Kubernetes, onde o '8’ representa as oito

letras entre 0 'K’ e 0’s’ (APPVIA, 2024)

RESTful Representational State Transfer

1.1
1.1.1
1.1.2
1.2

2.1
2.2
2.2.1
2.3
2.3.1
2.3.2
2.4

41

411
41.2
4.2

4.2.1
422
423

5.1
5.2
5.2.1
5.2.2

SUMARIO

INTRODUCAOD ittt i e e e e e e e e e e e e e e e e 10
Objetivos i e e e e e e e e e 11
Objetivogeral 11
Objetivos especificoso 11
Estruturadotrabalho 11
REFERENCIALTEORICO. it ittt e e e e e e e e e e e e e 12
Clusters o i i e e e e e e e e e e e e 12
Containers i i i e e e e e e e e e e 12
Orquestracdo de containers 0. 13
Kubernetes @ i i i i i i e e e e 13
Balanceamentode Carga Lo 14
Distribuicbes do Kubernetes 16
Computadores com poder computacional limitado 16
TRABALHOS RELACIONADOS ¢ ittt e 17
MATERIAISEMETODOS v i ittt et e et e et e e e e 18
Materiais e e e e e e e e e e e e e 18
Hardware 18
Software e 19
Métodos i i e e e e e e 20
Testes de Interacdodo cluster 20
Ferramenta de automacadodostestes 21
Métricas e 23
RESULTADOS EXPERIMENTAIS 25
Resultados por TipodeTeste 25
Andlisede Desempenho 26
Série de Fibonacci (Processamento distribuido) 26
Bubble Sort (Processamento Sequencial) 28
CONSIDERACOESFINAIS it ittt et ee e 31
REFERENCIAS et e et e e e e 32

GLOSSARIO i o e e e e e e e e e e e e e e e e e e 34

APENDICES
APENDICE A — SCRIPT DE TESTE E APLICAGCAO DE TESTE

10

1 INTRODUCAO

O conceito de cluster tem se tornado fundamental em ambientes que exigem proces-
samento distribuido (MONTEIRO et al., 2021). Um cluster é formado por um conjunto de com-
putadores que trabalham de forma colaborativa, aumentando a capacidade de processamento
ao distribuir tarefas entre os computadores. (IBM, 2024). Isso permite que sistemas computa-
cionais com recursos limitados, como computadores antigos, possam ser reaproveitados, sem
custos adicionais consideraveis, em configuragdes que maximizam o desempenho do sistema
como um todo.

Aplicagbes web podem ser distribuidas, permitindo que o armazenamento e o proces-
samento de dados sejam divididos entre os varios computadores em uma rede ou cluster de
computadores. De forma mais abrangente, aplicagées que seguem o paradigma cliente-servidor
ou peer-to-peer podem se beneficiar do uso de clusters de computadores para um sistema dis-
tribuido.

Com tecnologias como containers, que isolam aplicagées e garantem a portabilidade
entre diferentes sistemas, e o Kubernetes, que orquestra e gerencia esses containers (CNCF,
2024a), torna-se possivel utilizar clusters Kubernetes para diversas finalidades, como mencio-
nado em (MONTEIRO et al., 2021), p. 154, "em seu cluster préprio (de forma local), em um
sistema de arquitetura hibrida ou até mesmo em qualquer provedor de computagdao na nuvem
publica.". Um cluster de computadores é considerado um sistema de arquitetura hibrido. Logo,
um cluster Kubernetes pode ser implantado considerando essa arquitetura.

A principal motivagao deste trabalho é oferecer uma alternativa econémica e ambien-
talmente sustentavel ao reaproveitamento de computadores com poder computacional limitado,
que normalmente seriam descartados. Ao implementar clusters Kubernetes nesses equipamen-
tos, é possivel reduzir custos com aquisicao de hardware e minimizar o impacto ambiental do
descarte de eletrénicos, promovendo o uso eficiente de recursos ja disponiveis. Essa aborda-
gem viabiliza a criacdo de ambientes acessiveis para testes e desenvolvimento de aplicacdes
distribuidas, especialmente em contextos académicos e experimentais.

Desta forma, este trabalho explorou cluster Kubernetes em computadores com capa-
cidade computacional limitada para aproveitar ao maximo o sistema computacional como um

todo.

11

1.1 Objetivos

1.1.1 Objetivo geral

Este trabalho teve como objetivo geral avaliar o desempenho de um cluster Kubernetes,
para aplicacdes distribuidas stateless, o qual foi implantado em maquinas com poder computa-
cional limitado.

1.1.2 Objetivos especificos

» Montar uma rede de computadores utilizando computadores com capacidade compu-
tacional limitada.

* Implantar um cluster Kubernetes na rede de computadores criada.

» Avaliar o desempenho do cluster Kubernetes criado, considerando suas limitagbes
computacionais, utilizando aplicagdes stateless, como aplicacbes web, por exemplo.

» Documentar o processo de configuracao e implantacao do cluster Kubernetes.

» Montar os graficos resultantes das avaliagbes de desempenho (por exemplo, uso de
CPU, RAM e tempo de resposta) realizadas.

1.2 Estrutura do trabalho

O trabalho esta dividido como segue. A Secdo 1 contextualiza o problema e apresenta
os objetivos do trabalho e a justificativa para o seu desenvolvimento. A Secao 2 refere-se ao
Referencial Te6rico, o qual aborda os principais conceitos e tecnologias utilizados no trabalho,
como clusters, containers, Kubernetes e Docker, além de discutir os desafios de uso de hard-
ware ultrapassado em ambientes distribuidos. A Se¢édo 3 descreve os trabalhos relacionados e
na Secao 4 sao citados o software, hardware e metodologias de testes que foram usados no
decorrer do trabalho. Na Secéao 4, o desenvolvimento deste trabalho é apresentado, e na Secéo
5 os resultados séo descritos. Por fim, as referéncias bibliograficas séo apresentadas.

12

2 REFERENCIAL TEORICO

Nesta Secado, apresentaram-se conceitos fundamentais relacionados ao desenvolvi-
mento deste trabalho, incluindo clusters, containers, orquestracao de containers e Kubernetes,
com foco na implantagéao de clusters Kubernetes em maquinas com poder computacional limi-
tado.

2.1 Clusters

Segundo a IBM (2024), clusters sao aglomerados de computadores que trabalham jun-
tos para executar tarefas, balanceando a carga de trabalho. Cada computador em um cluster é
chamado de né (node), e cada n6 é formado por um Sistema Operacional (OS, do inglés Ope-
rating System) e um software intermediario, que é responsavel por gerenciar a comunicagao e
a execucao de tarefas no cluster. A estrutura de um cluster pode variar entre um Unico né até
milhares de nés, geralmente conectados por uma Rede de Area Local (LAN, do inglés Local
Area Network) (IBM, 2024).

Os clusters podem ser divididos em dois grupos principais:

» Computagao de Alta Performance (HPC, do inglés High-Performance Computing): Pro-
jetados para executar tarefas que precisam de um grande poder computacional, como
simulagdes cientificas ou processamento de grande volume de dados.

+ Alta Disponibilidade (HA, do inglés High Availability): Desenvolvidos para garantir que
0S SEervicos e recursos permanegam acessiveis, mesmo em caso de falhas em um ou
mais nés, geralmente sendo utilizados na hospedagem de aplicagcdes.

Neste trabalho, foi utilizado um cluster de HA, gerenciado pelo Kubernetes, que foi ex-
plorado na Secao 4. A escolha do mesmo foi feita com base na facilidade de adicionar novos
nés (CNCF, 2024a) e na flexibilidade fornecida pelos containers (GOOGLE, 2024a).

No caso do Kubernetes, o cluster é composto por um ou mais nés de plano de controle
(do inglés, control plane) e um ou mais nés de trabalho (CNCF, 2024). Os nds de plano de con-
trole sdo responsaveis pela administragao centralizada do cluster, enquanto os nés de trabalho
executam as cargas de trabalho, ou seja, 0s pods e containers das aplicacées, mas em alguns
casos, o plano de controle pode ser configurado para operar como um né de trabalho também
(ver Secéao 2.3).

2.2 Containers

Segundo a Google (2024a) containers sao "pacotes de software que contém todos os

elementos necessarios para serem executados em qualquer ambiente". Os containers utilizam

13

0 mesmo kernel que a maquina hospedeira e, além disso, podem compartilhar camadas de
sistema de arquivos, o que permite que multiplos containers usem as mesmas dependéncias
sem a necessidade de duplica-las, poupando assim recursos computacionais como memoria e
armazenamento.

Algumas caracteristicas fundamentais dos containers incluem a facil e confiavel recri-
acao de um mesmo container, o isolamento entre as aplicagdes que estdo sendo executadas
dentro de containers distintos em uma mesma maquina, e geralmente sendo mais leves em
comparagdo com maquinas virtuais (GOOGLE, 2024a). O isolamento € uma grande vantagem
dos containers, garantindo que as aplicacdes executadas em containers diferentes nao inter-
firam uma nas outras, apesar de estarem rodando no mesmo OS e compartilhando o mesmo
kernel. I1sso oferece seguranca, evita conflitos de dependéncias entre os diferentes ambientes
de execucdo e gera uma facilidade em hospedar aplicacdes completamente distintas em um
mesmo ambiente.

Essas caracteristicas tornam os containers ideais para maximizar a utilizacao do hard-
ware disponivel. Devido a sua leveza em relacdo a maquinas virtuais e flexibilidade, é possivel
executar multiplos containers em uma Unica maquina ou distribuir a carga de trabalho entre
containers alocados em diferentes maquinas, otimizando a eficiéncia e a escalabilidade dos

recursos computacionais.

2.2.1 Orquestragéo de containers

De acordo com o Google Cloud (GOOGLE, 2024b), a orquestracao de containers refere-
se a automacao do gerenciamento de recursos e do ciclo de vida dos containers. Essa préatica
desempenha um papel crucial na garantia da eficiéncia e escalabilidade em ambientes com
multiplos containers, seja em sistemas independentes ou operando em clusters.

Neste trabalho, o Kubernetes foi empregado como a principal ferramenta de orquestra-
¢ao. Sua implantagéo permitiu a gestéo eficiente dos recursos computacionais disponiveis, bem
como a distribuicao equilibrada da carga de trabalho entre as maquinas do cluster, maximizando
a utilizacao de hardware limitado.

2.3 Kubernetes

O Kubernetes, também conhecido como K8s', é uma plataforma de orquestracédo de
containers desenvolvida pela Google em 2014, projetada para automatizar a implantacao, o
dimensionamento e a operagao de containers (CNCF, 2024). O Kubernetes permite a criagdo
de clusters de HA, compostos por um ou mais nés de plano de controle e um ou mais nés

T O termo “K8s” é uma abreviacdo de Kubernetes, onde o nimero “8” representa as oito letras entre

0 “K” e 0 “s” na palavra “Kubernetes” (APPVIA, 2024). E uma pratica comum em tecnologia para
abreviar nomes longos e complexos.

14

de trabalho. Os nés de plano de controle sdo responsaveis pela administracdo centralizada
do cluster, enquanto os nds de trabalho executam as cargas de trabalho, ou seja, os pods e
containers das aplicacées, mas em alguns casos, o plano de controle pode ser configurado
para operar como um né de trabalho também.

Os nés de plano de controle sdo responsaveis por manter o estado desejado do cluster
dentro de parametros definidos pelo administrador, como a quantidade de coépias de um pod
contendo um ou mais containers de uma aplicacdo ou a escolha do né mais adequado para
executar a mesma, avaliando os recursos disponiveis.

Os nés de trabalho sao responsaveis por executar um ou mais pods. Os pods sao as
menores unidades de trabalho no Kubernetes, e cada um pode conter um ou mais containers
que compartilham recursos como rede e armazenamento.

Segundo CNCF (2024b). Os pods sao efémeros, o que significa que estes podem ser
criados, destruidos e recriados conforme necessario, dependendo das necessidades do cluster.
Os pods sao gerenciados por um ou mais nés de plano de controle do Kubernetes, que monitora
o estado dos pods e garante que estes estejam sempre em conformidade com o estado dese-
jado definido pelo administrador do cluster. Se um pod falhar, ser destruido ou seja alterada a
quantidade de réplicas, o plano de controle pode automaticamente criar um ou mais pods para
substitui-lo, garantindo a continuidade do servigo.

No contexto deste trabalho, a aplicagdo do Kubernetes foi fundamental no balancea-
mento de carga de trabalho entre as maquinas do cluster utilizando um LB, garantindo o uso

eficiente do hardware disponivel e maximizando o aproveitamento dos recursos computacionais.

2.3.1 Balanceamento de Carga

Dentro do Kubernetes, os pods possuem uma rede interna aonde containers podem
se comunicar entre si, mas aonde a rede externa ndo pode acessar esses. Para clientes que
desejam acessar aplicagdes existentes nesses pods, faz-se necessaria a criacao de Services.
Os Services expdoem um ou mais pods para a rede externa. Existem diversos tipos de Services
com a mesma funcao, entretanto, neste trabalho o foco foi o LB Service (CNCF, 2024).

O LB Service no Kubernetes tem a capacidade de distribuir requisi¢cdes entre um ou mais
nés, facilitando o acesso externo as aplicagdes hospedadas nos pods. Existem diversas imple-
mentacgdes de LB para o Kubernetes; normalmente, esse componente é um servigo externo que
se integra ao Service do Kubernetes para encaminhar as requisicées de forma equilibrada entre
o0s pods disponiveis. Neste trabalho, foi utilizado o MetalLB ? (CNCF, 2025a), uma solugdo de
LB voltada para ambientes bare metal, ou seja, para infraestruturas que néo estdo hospedadas

em provedores de nuvem.

2 O nome MetallB é uma combinagao de “metal” (bare metal) e LB, refletindo seu propésito de fornecer
balanceamento de carga em ambientes bare metal. (CNCF, 2025a)

15

O MetallB pode operar em dois modos principais (CNCF, 2025a): Protocolo de Gateway
de Fronteira (BGP, do inglés Border Gateway Protocol) e Camada 2 (L2, do inglés Layer 2). No
modo L2, correspondente a camada de enlace do modelo Modelo de Interconexao de Sistemas
Abertos (OSlI, do inglés Open Systems Interconnection), o MetalLB responde a requisi¢coes de
Protocolo de Resolugdo de Enderecos (ARP, do inglés Address Resolution Protocol) para um
endereco Protocolo de Internet (IP, do inglés Internet Protocol) virtual e elege um né do cluster
para ser responsavel por esse endereco, recebendo todas as requisicoes destinadas a esse.
Caso esse né falhe, outro n6 é automaticamente escolhido para assumir a responsabilidade. Ja
no modo BGP, o MetalLB anuncia rotas para o endereco IP virtual utilizando o protocolo BGP,
permitindo que o trafego seja roteado para os nds do cluster por meio de roteadores externos.
Neste trabalho, optou-se pelo modo L2 devido a sua simplicidade, facilidade de configuracédo
em ambientes locais e ndo necessitar de hardware especializado, tornando-o ideal para clusters
com recursos computacionais limitados.

No caso da utilizacdo do MetalLB em modo L2, o balanceamento de carga é feito de
forma automatica pelo Service do Kubernetes, que utiliza o kube-proxy para balancear as re-
quisicoes entre os pods disponiveis. O kube-proxy é um componente do Kubernetes que atua
como um proxy de rede, roteando o trafego para os pods corretos com base nas regras defini-
das no Service (CNCF, 2025b), a regra padréo é o iptables, que distribui as requisi¢cdes entre
0s pods de forma randomizada.

Figura 1 — Balanceamento de carga usando o LB no Kubernetes.

Cluster

‘—
Load

Client Service Pod

Balancer
—

Pod

|

Pod

Fonte: Adaptacao de (GEEKSFORGEEKS, 2025).

Conforme pode ser observado na Figura 1, as requisicdes sdo recebidas pelo LB e
depois distribuidas pelo Service entre 0s pods, que contém a mesma aplicagao, juntamente
com a administragao automatica de qual né de trabalho tem quais pods no cluster Kubernetes.
O LB é responsavel por balancear a carga de processamento das requisicoes entre as maquinas
do cluster.

16

2.3.2 Distribui¢cdes do Kubernetes

Assim como outros diversos projetos de codigo aberto, o Kubernetes tem diversas va-
riacoes que foram criadas com base no seu projeto inicial. E algumas dessas variacdes se
especializaram na diminuicdo do consumo de recursos, como RAM e processamento da CPU,
podendo ser citadas:

» O k3s, desenvolvido para ambientes de Internet das Coisas (loT, do inglés Internet
of Things), é otimizado para ser implantado em uma ampla gama de arquiteturas de
sistemas (Rancher Labs, 2024).

» O MicroK8s é uma versao simplificada e otimizada do Kubernetes, a qual foi projetada
para permitir a criagao de clusters com facilidade e rapidez (CANONICAL, 2024).

* O kOs é uma variante bare metal do Kubernetes, ideal para ser utilizado em loT, com
flexibilidade para ser implantado em diversos ambientes (KOS PROJECT, 2024).

As distribuicdes sdo variagbes que podem ser utilizadas em diferentes ambientes e para
varios propésitos.

Neste trabalho foram escolhidas distribuicbes do Kubernetes que sdo otimizadas para
consumir poucos recursos computacionais, como RAM e processamento da CPU, visando ma-
ximizar o aproveitamento do hardware disponivel. As distribuicdes escolhidas foram o k3s, o
MicroK8s e 0 kOs.

2.4 Computadores com poder computacional limitado

O conceito de computadores com capacidade computacional limitada pode variar de-
pendendo do contexto de uso. Para os propdésitos deste trabalho, define-se como maquinas
com recursos modestos em relagdo aos requisitos tipicos de aplicagdes modernas. Nesta defi-
nicao, incluem-se computadores que possuem 4 Gigabyte (GB) de RAM, processadores com 4
ndcleos a 2 nucleos de CPU com arquitetura x86-64, caracteristicas que restringem sua capa-
cidade de executar tarefas intensivas em recursos. Os computadores que foram utilizados sao

descritos na Segéo 4.1.1.

17

3 TRABALHOS RELACIONADOS

Diversos estudos abordam a utilizacdo de Kubernetes em ambientes com recursos li-
mitados, destacando-se pela adaptacao de arquiteturas para permitir a operacao eficiente em
hardware de baixo custo. Esses trabalhos sdo relevantes para este, pois apresentam alterna-
tivas e abordagens que se alinham com a proposta de implantar um cluster Kubernetes em
computadores com poder computacional limitado.

Um estudo realizado por Silva (2022) aborda a implementagédo de solugdes computa-
cionais em ambientes com hardware modesto utilizando tecnologias como o Kubernetes para
otimizacao de recursos em sistemas com capacidade computacional limitada. Esse trabalho é
particularmente interessante, pois explora as mesmas questdes relacionadas ao uso de clusters
Kubernetes em maquinas de baixo custo, oferecendo perspectivas relacionadas aos desafios de
desempenho e eficiéncia.

O trabalho de Programming Group (GROUP, 2023) explora diferentes distribuicbes de
Kubernetes otimizadas para ambientes com recursos limitados, como 0 k3s, kOs e Microk8s,
destacando a importancia dessas versoes leves para a implementagao de clusters em hardware
modesto. Essa pesquisa complementa a proposta deste trabalho, ja que o uso de distribuicbes
otimizadas pode ser uma solucao crucial para garantir o funcionamento eficiente do cluster,
mesmo em maquinas com pouca memoria RAM e capacidade de processamento.

Outro estudo relevante é o de Learn Fast Make Things (MORSE, 2023), que discute
como transformar hardware antigo em clusters Kubernetes, utilizando recursos limitados de
maneira eficiente. Esse trabalho se aproxima diretamente do objetivo deste, ao sugerir métodos
de aproveitamento de hardware obsoleto para a criacdo de clusters, alinhando-se a proposta
de utilizar maquinas com poder computacional limitado para implementacao de solucdes esca-
laveis.

Esses trabalhos forneceram uma base teérica e pratica sélida, que orientou a escolha
de tecnologias e estratégias para a implementacao de clusters Kubernetes em hardware com
recursos limitados, contribuindo significativamente para o desenvolvimento deste trabalho.

18

4 MATERIAIS E METODOS

Esta Secao descreve os materiais e métodos utilizados para a implantacao e avaliagao
de um cluster Kubernetes em computadores com poder computacional limitado. A Secao 4.1
detalha os componentes de hardware e software empregados, enquanto a Se¢éo 4.2 apresenta
os testes realizados, procedimentos adotados para realizagao desses e as métricas coletadas
durante a execugéo.

4.1 Materiais

Os materiais utilizados estao organizados em duas categorias principais: hardware, que
abrange os computadores e equipamentos de rede, e software, que compreende as distribui-

cOes de Kubernetes e ferramentas utilizadas para realizar os testes e monitoramento.

411 Hardware

As Especificacdes técnicas dos computadores que formaram o cluster pode ser obser-
vadas na tabela a seguir:

Tabela 1 — Especificacoes técnicas dos computadores.

Computador Nucleos CPU | Clock CPU | Cache CPU | RAM | Velocidade de Rede
N6 Plano de Controle/Trabalho 4 2.95 GHz 8 MB 4 GB 100 Mbps
N6 de Trabalho 1 4 3.0 GHz 12 MB 4GB 100 Mbps
N6 de Trabalho 2 2 3.0 GHz 3 MB 4 GB 100 Mbps

Fonte: Elaborado pelo autor.

E as pecas que formaram os computadores séo:

Tabela 2 — Pecas que compuseram os computadores.

Computador CPU | Placa mae RAM Disco Placa de

Plano de Controle/Né de Trabalho | i7-870 | bpc-hm55 kvri6n11/4 wd5000Ipvx Onbo
N6 de Trabalho 1 e5450 g41m BMD34096M1333C9 wd5000Ipvx Onbo

Né de Trabalho 2 g2030 Oxfwhv m378b5273eb0-ck0 | st500dm002-1bd142 Onbo

Fonte: Elaborado pelo autor.

Sendo o n6 de plano de controle atuando também como né de trabalho e dois computa-
dores adicionais atuando apenas como nés de trabalho.

Além dos computadores, foi utilizado um switch de rede Encore do modelo enh916p-nwy
com fast ethernet (até 100 Megabits por segundo de velocidade) para interligar os dispositivos

e um computador configurado para servir como roteador.

19

4.1.2 Software

O software utilizado no desenvolvimento deste trabalho pode ser dividido em cinco cate-
gorias principais: distribuicdes de Kubernetes, componentes adicionais instalados no Kuberne-
tes, pacotes instalados nas maquinas, linguagem e tecnologias utilizadas na aplicacdo de teste
e ferramentas para desenvolvimento do script de testes.

As distribuicoes de Kubernetes utilizadas foram: k3s, MicroK8s e kOs que sao melhores
descritas na Se¢ao 2.3.2.

Componentes adicionais instalados no Kubernetes:

* MetalLB: Implementacédo de LB para ambientes bare metal, permitindo a distribuicao
de trafego entre os pods do cluster Kubernetes (CNCF, 2025a).

Os pacotes instalados nas maquinas que compuseram o cluster Kubernetes sao:

» Debian 11: Sistema operacional baseado em Linux, conhecido por sua estabilidade
€ seguranca, utilizado como base para a instalacdo das distribuicoes de Kubernetes
(DEBIAN, 2024).

» sysstat: Conjunto de ferramentas para monitoramento de desempenho do sistema,
utilizado para coletar métricas de uso da CPU e memoéria (SYSSTAT, 2024).

» OpenSSH: Conjunto de ferramentas para acesso remoto seguro via SSH, do in-
glés Secure Shell, utilizado para administracao e monitoramento dos nés do cluster
(OPENSSH, 2025).

A aplicacao de teste foi desenvolvida utilizando as seguintes tecnologias:

» Docker: Plataforma de containers utilizada para empacotar a aplicacao de teste e suas
dependéncias, garantindo portabilidade e consisténcia entre os ambientes (DOCKER,
2024).

* Node.js v22: Ambiente de execucao JavaScript OpenSource utilizado no desenvolvi-
mento da aplicagéo de teste (NODE.JS, 2024).

» Express: Framework para Node.js que facilita a criacdo de aplicacdes web e Interface
de Programacao de Aplicacées (API, do inglés Application Programming Interface)s
RESTful (EXPRESS, 2024).

» Axios: Biblioteca Protocolo de Transferéncia de Hipertexto (HTTP, do inglés Hypertext
Transfer Protocol) utilizada para realizar as requisicdes entre as partes da aplicagao
de teste (AXIOS, 2024).

As ferramentas utilizadas para o desenvolvimento do script séo:

20

» Python 3.9: Linguagem utilizada na implementacao do script, responséavel tanto pela
coleta de dados via SSH quanto pela execugao das requisi¢des a aplicacao (PYTHON
SOFTWARE FOUNDATION, 2025).

» paramiko: Biblioteca Python para conexao SSH, utilizada no script para acessar re-
motamente os servidores e coletar métricas de uso dos recursos (PARAMIKO, 2024).

« httpx: Biblioteca HTTP assincrona para Python, utilizada no script para gerar requisi-
coes concorrentes com controle preciso de tempo e volume (ENCODE, 2024).

4.2 Meétodos

Nesta Se¢ao sao descritos os testes e métricas executados para avaliar o desempenho
do cluster Kubernetes implementado em maquinas com poder computacional limitado.

4.2.1 Testes de Interacédo do cluster

Os testes descritos nesta Secao tiveram como objetivo avaliar o desempenho geral do
cluster Kubernetes em diferentes cenarios de uso. Os algoritmos implementados para os testes

foram:

* Implementagdo do algoritmo do célculo do n-ésimo numero da série de Fibonacci
(CORMEN et al., 2024) usando requisicoes HTTP para formar uma recursdo, assim
simulando uma grande quantidade de requisigées simultaneas e distribuindo a carga
entre os nos do cluster ao passar as requisi¢des pelo LB.

A Figura 2 ilustra o ciclo de vida de uma requisicao para calcular o digito n da sequéncia
de Fibonacci. O processo inicia-se com o cliente enviando a requisicdo ao LB, que a
encaminha para um dos pods do cluster. O pod recebe a requisicdo e, por meio do
container responsavel pelo algoritmo, realiza chamadas recursivas ao préprio Service
exposto, solicitando os valores de n —1 e n —2 — cada chamada passando novamente
pelo LB assim distribuindo a carga entre os nés. Esse fluxo se repete até atingir os
casos base (n = 1 ou n = 2), que retornam 1. Por fim, os resultados das chamadas

recursivas sdo somados e o valor final é devolvido ao cliente.

A abordagem utilizada baseia-se na definicao recursiva da sequéncia de Fibonacci:

1, sen <2
Fibonacci(n) = (1)

Fibonacci(n — 1) + Fibonacci(n — 2), senédo

21

Figura 2 — Ciclo de vida de um requisicao
do numero de Fibonacci.

fMbonacci?n=2

Cluster

— Pod Container

Client « > L] «—» Semice Pod
Balancer

flibonacci?n=3 » «—

Fonte: Autoria propria (2025).

Essa definicao gera uma grande quantidade de requisi¢des simultaneas, simulando um
cenario de alto trafego no cluster. O objetivo desse teste é avaliar como o sistema se
comporta sob cargas intensas, identificando possiveis gargalos e limitacdes de desem-
penho.

» Desenvolvimento de um algoritmo de ordenacgao utilizando o método de ordenacgéo
Bubble Sort (BIGGAR; GREGG, 2005) para processar listas invertidas de diferentes
tamanhos. Esse teste visou um processo computacional relativamente pesado e nao
distribuido, assim sendo cada requisicao era processada em um dos noés do cluster
sem distribuicdo de carga.

Esses experimentos permitem avaliar o desempenho do cluster em situa¢des diversas,
desde alto trafego de requisi¢coes até cargas computacionalmente intensivas, identificando pos-
siveis gargalos e oportunidades para otimizagao.

A aplicacdo de teste foi implantada no cluster Kubernetes utilizando pods. Cada n6
continha um pod que continha a aplicagao de teste, permitindo a distribuicdo das requisi¢cdes
entre os nos do cluster.

4.2.2 Ferramenta de automacao dos testes

Para padronizar os testes e garantir reprodutibilidade, foi desenvolvido um script em
Python 3.9. Esse script teve como proposito automatizar a descoberta da carga maxima supor-

22

tada por cada distribuicido Kubernetes, considerando o tempo médio de resposta como critério
de aceitacao, coletar métricas dos computadores usando SSH e armazenar os dados em um
arquivo de Notacao de Objetos JavaScript (JSON, do inglés JavaScript Object Notation) dos
computadores e do tempo de resposta das requisi¢cdes para posterior analise.

A logica implementada foi dividida em duas etapas, executadas em rodadas. Cada ro-
dada é definida por uma carga C', uma taxa de requisicdes por segundo R e pela funcédo
MédiaTempoDeResposta(C,R), que retorna o tempo médio de resposta (em segundos) para
a combinagéo (C,R). Cada rodada consistiu de 30 segundos de geragao de requisigdes segui-
dos por 30 segundos de pausa.

» Etapa 1 - Descoberta da carga maxima para uma requisicao por sequndo: O script
incrementava progressivamente a carga C' comegando em 1 (nimero da sequéncia de
Fibonacci sendo DigitoDeFibonacci(C') = C ou itens para ordenagédo com Bubble
Sort sendo TamanhoDoV etor(C') = 2°) em cada rodada, inicialmente mantendo
a taxa de requisicoes constante em R = 1. O processo continuava até que o tempo
médio de resposta 7' ultrapassasse 2 segundos. Sendo a carga que ultrapassou o
limite considerada C' para a préxima fase. Essa etapa pode ser formalizada da seguinte
maneira:

C, se MédiaTempoDeResposta(C,1) > 2s
MaiorCarga(C') =

MaiorCarga(C' + 1), senéo
(2)

- Etapa 2 — Determinacao da taxa maxima de requisicoes para diferentes cargas:
Para os valores de carga C' — 1, C' — 2 e C' — 3, determinado na Etapa 1, o script
definia a quantidade de requisicbes R com R comegando em 1 e dobrando a cada
rodada até que o tempo médio de resposta T’ excedesse 2 segundos. Em seguida, era
realizada uma busca binaria para identificar o maior valor de R que mantivesse o tempo
de resposta médio abaixo do limite estabelecido. Essa etapa pode ser formalizada da
seguinte maneira:

BuscaBinaria(R), se MédiaTempoDeResposta(C, R) > 2s
MaiorTaxa(C, R) =

MaiorTaxa(C, 2R), sen&o
(3)

O tempo de resposta médio de 2 segundos foi escolhido como critério de aceitagao
para garantir que o sistema mantivesse um desempenho aceitavel sob carga, evitando tempos
de espera excessivos que poderiam comprometer a experiéncia do usuario como descrito por
(Jakob Nielsen, 2025).

23

Durante a execugao dos testes, apés a determinacdode C' — 1, C'—2 e C'— 3 e de suas
respectivas taxas maximas de requisi¢coes, as métricas dos servidores — como uso de CPU e
RAM — foram coletadas a intervalos regulares de 0,5 segundos. Paralelamente, os dados das
requisicoes, incluindo o tempo de resposta de cada chamada, foram registrados e armazena-
dos para posterior andlise, permitindo uma visdo detalhada e continua do comportamento do
sistema sob carga.

Esse procedimento de testes foi inicialmente executado em uma distribuicao de Kuber-
netes escolhida como referéncia. Os parametros de carga (C) e de taxa de requisicdes ma-
xima () determinados nessa execugao foram reproduzidos nas demais distribui¢des, mantendo
constantes a duragcao das rodadas e os periodos de pausa, mas ignorando o critério de acei-
tacado (tempo médio de resposta maior ou igual a 2 segundos). Para cada distribuicao, o script
automatizou as etapas descritas, coletando e registrando de forma padronizada as métricas de
tempo de resposta e o uso de recursos (CPU e RAM), o que permitiu comparacdes diretas e
isentas de variabilidade humana.

Os testes foram executados por um computador externo ao cluster, conectado direta-
mente ao switch, de modo a nao interferir nos recursos computacionais dos nés do sistema.
Esse script também foi responsavel pela coleta e armazenamento das métricas de tempo de
resposta €, em conjunto com o sysstat, pelo monitoramento de uso de CPU e RAM via SSH.

Essa automagédo aumentou o rigor experimental ao padronizar a geracao de carga, a
coleta de métricas e o registro temporal dos eventos. O script controla de forma deterministica
as rodadas de teste (duragdo, periodos de pausa € valores de carga), realiza a amostragem
das métricas de CPU e RAM em intervalos regulares de 0,5 s via SSH e grava todos os re-
sultados em arquivos JSON juntamente com metadados (data e hora, n6, carga e parametros
de execucdo). Essa padronizagéo reduz variagdes introduzidas pela execugao manual, facilita
a reprodutibilidade dos experimentos e possibilita analises estatisticas sobre os dados brutos.
A implementagdo completa do script, instrugdes de execucao e exemplos dos dados coletados
estdo disponiveis no Apéndice A.

4.2.3 Meétricas

Durante os testes, foram coletadas as seguintes métricas para avaliar o desempenho do
sistema:

» Consumo de meméria RAM: Foi monitorada a utilizacdo de meméria pelas maquinas
individualmente e pelo cluster como um todo, identificando o impacto das diferentes
cargas de trabalho.

+ Utilizacdo de processamento (CPU): Acompanhamento da carga de processamento
em cada maquina e no cluster com o objetivo de detectar possiveis gargalos.

24

» Tempo de resposta: Medicdo do tempo necessario para as aplicagdes implantadas no

cluster processarem as requisi¢oes enviadas, avaliando a eficiéncia do sistema.

25

5 RESULTADOS EXPERIMENTAIS

Esta secdo apresenta os resultados obtidos durante a execucdo dos testes no cluster
Kubernetes implementado com hardware de poder computacional limitado. O cluster operou
com trés nés (um no de plano de controle/trabalho e dois ndés somente de trabalho). As cargas
e requisicdes maximas foram determinadas com a metodologia explicada na Secao 4.2.1 e foi
escolhida arbitrariamente a distribuicdo k3s como referéncia. Adotou-se um critério de aceitacao
de tempo de resposta médio inferior a 2 s para definir o ponto em que o sistema ainda é consi-
derado aceitavel em termos de usabilidade e capacidade de atendimento; esse limite baseia-se
em estudos de percepcgao de laténcia do usuario (Jakob Nielsen, 2025) e funciona como um
parametro préatico para comparar distribuicdes sob as mesmas restricoes. Nas analises, os re-
sultados foram avaliados considerando as métricas de CPU, RAM e desempenho de rede, de
modo a correlacionar a experiéncia de resposta com a eficiéncia no uso de recursos do cluster.

5.1 Resultados por Tipo de Teste

Os dados coletados durante os testes de desempenho do cluster estao organizados nas
tabelas a seguir de acordo com o tipo de carga computacional. Na Tabela 3, estdo dispostos os
resultados obtidos com o algoritmo da Série de Fibonacci, onde o campo “n” indica 0 nimero
da sequéncia a ser calculado. J4 a Tabela 4 apresenta os dados referentes ao teste de ordena-
¢ao com o algoritmo Bubble Sort, sendo o campo “Tamanho do vetor” o expoente aplicado na
geracao das listas inversamente ordenadas (2").

Tabela 3 — Dados coletados durante a execucao do teste de Fibonacci.

Distribuicao | n | Tempo de resposta médio | Requisicoes/segundo
kOs 18 2.870s 1
k3s 18 1.413s 1
microk8s 18 3.303s 1
kOs 17 2.049s 2
k3s 17 1.482s 2
microk8s 17 3.705s 2
kOs 16 3.024s 3
k3s 16 2.021s 3
microk8s 16 3.044s 3

Fonte: Elaborado pelo autor

A Tabela 4 apresenta os dados coletados durante a execugao do algoritmo de ordenagéo
Bubble Sort.

26

Tabela 4 — Dados coletados durante execucao do teste de Bubble Sort.

Distribuicao | Tamanho do vetor | Tempo de resposta médio | Requisicoes/segundo
kOs 215 1.456s 4
k3s 215 1.472s 4
microk8s 215 1.480s 4
kOs 214 0.459s 22
k3s 214 0.497s 22
microk8s 214 0.438s 22
kOs 213 0.102s 38
k3s 213 0.111s 38
microk8s 213 0.107s 38

Fonte: Elaborado pelo autor

5.2 Analise de Desempenho

A analise dos resultados demonstra diferengas significativas no desempenho e na efici-
éncia de recursos das distribuicdes Kubernetes sob cargas de trabalho distintas.

5.2.1 Série de Fibonacci (Processamento distribuido)

O teste de Fibonacci (Tabela 3), que é intensivo em CPU e demanda paralelismo, evi-
denciou que o desempenho esta diretamente ligado a capacidade da distribuicao de balancear
a carga entre os nés.

* Quanto ao desempenho a distribuicdo k3s para a carga de n = 18, 0 k3s(1,413s) foi
0 Unico capaz de atender a 1 Requisi¢coes por Segundo (RPS, do inglés Requests Per
Second) dentro do limite aceitavel de 2s, enquanto kOs e MicroK8s nao conseguiram
atender a essa carga dentro do limite.

» Para a carga de n = 17, o k3s (1,482s) novamente superou as outras distribui¢des,
atendendo a 2 RPS dentro do limite aceitavel, enquanto o k0Os (2,049s) ficou ligeira-
mente acima do limite e o MicroK8s (3,705s) ndo conseguiu atender a essa carga.

* Nacargaden = 16, 0 k35 (2,021s) manteve a liderangca em desempenho, atendendo a
3 RPS proximo ao limite aceitavel, seguido pelo k0s (3,024s) e pelo MicroK8s (3,044s),
ambos incapazes de atender a essa carga dentro do limite.

A distribuicao k3s, provou ser a opgcao mais eficiente para um grande nimero de re-
quisicbes simultaneas de baixa complexidade no contexto deste trabalho, especialmente em
cenarios de alta concorréncia.

A analise integrada dos recursos de CPU e RAM (Figuras 3 e 4) revela a correlacédo
direta entre 0 padrao de uso de recursos e o desempenho observado no teste de Fibonacci.
O k3s, que obteve o melhor tempo de resposta (1,413s para n = 18), demonstrou uma estra-
tégia equilibrada: consumo intermediario de CPU em todos os n6s e maior alocacdo de RAM
especialmente no n6 de plano de controle/trabalho. Essa maior alocagédo de meméria permite

27

que o0 k3s mantenha estruturas de dados otimizadas para o escalonamento e gerenciamento de
tarefas paralelas, resultando em distribuicao mais eficiente da carga entre os nés do cluster.

Figura 3 — Comparacao de Uso de CPU por N6 (Fibonacci numero 18).

Distribuigao
. kOs
25 4 mm k3s
B microk8s

23.10%

201

15 A

Uso Médio de CPU (usr) %

7.68%

6.96%

4.66%
3.58%

control-plane worker-1 worker-2

Fonte: Elaborado pelo autor

Em contraste, o kOs apresentou o menor consumo tanto de CPU quanto de RAM em to-
dos os nés, mas obteve tempo de resposta 103% maior que o0 k3s (2,870s versus 1,413s). Essa
economia de recursos indica uma abordagem conservadora na distribuicdo de carga: ao utilizar
menos memdéria para gerenciamento, o kOs limita sua capacidade de paralelizar eficientemente
as requisicoes, resultando em menor aproveitamento da capacidade computacional disponivel
no cluster. Essa caracteristica torna o kOs adequado para ambientes com severas restricoes de
RAM, porém as custas de desempenho em cargas paralelas.

A distribuicdo MicroK8s exibiu o padrao mais ineficiente: maior consumo de CPU em
todos os nés e alto consumo de RAM nos nés de trabalho, porém com o pior desempenho
(3,303s — 134% mais lento que o k3s). Esse comportamento sugere sobrecarga excessiva
de gerenciamento, onde o uso elevado de recursos ndo se traduz em melhor distribuicdo de
tarefas. A combinacdo de alta utilizacdo de CPU com baixo desempenho indica ineficiéncias
arquiteturais, possivelmente relacionadas a processos de orquestragdo que competem com as
aplicagcdes pelos recursos computacionais.

Portanto, para cargas de trabalho paralelas intensivas em CPU, o investimento de me-
méria RAM no plano de controle para gerenciamento eficiente do escalonamento é determinante
para o desempenho. O k3s demonstra o melhor equilibrio entre uso de recursos e capacidade
de resposta, enquanto o kOs prioriza economia de recursos em detrimento do desempenho, e 0
MicroK8s apresenta ineficiéncia na conversao de recursos em ganhos de desempenho.

28

Figura 4 — Comparacao de Uso de RAM por N6 (Fibonacci numero 18).

Distribuigdo
. kOs
e k3s
B microk8s

2000 -

1803.8 MB

17501 1684.4 MB

1670.0 MB

1500

12501

1083.8 MB

1036.4 MB

1000 -
908.2 MB
869.7 MB

Uso Médio de RAM (MB)

790.9 MB 789.9 MB

500 1

2501

control-plane worker-1 worker-2

Fonte: Elaborado pelo autor
5.2.2 Bubble Sort (Processamento Sequencial)

Os resultados do algoritmo Bubble Sort (Tabela 4), de natureza sequencial, indicaram
um cenario diferente, dominado pela limitagdo do hardware e otimizagbes do consumo de re-
cursos para processar cada tarefa individualmente.

« Na carga mais pesada (2'° elementos), todas as distribuicbes apresentaram desempe-
nho semelhante, com o kOs (1,456s), k3s (1,472s) e MicroK8s (1,480s) respondendo
a4 RPS.

« Na carga intermediaria (2'* elementos), o MicroK8s (0,438s) superou o k0s (0,459s)
€ 0 k3s (0,497s), todos respondendo a 22 RPS. Porém todas as distribuigdes tiveram
tempos de resposta muito proximos.

« Na carga mais leve (2'3 elementos), o kOs (0,102s) liderou novamente, seguido pelo
MicroK8s (0,107s) e pelo k3s (0,111s), todos respondendo a 38 RPS. Novamente, os
tempos de resposta foram muito préximos entre as distribuicdes.

Para algoritmos computacionalmente intensivos e sequenciais, como o Bubble Sort, o
kOs demonstrou ser ligeiramente mais eficiente, embora as diferencas de desempenho entre as
distribuicdes fossem minimas.

A analise conjunta dos recursos de CPU (Figura 5) e RAM (Figura 6) durante a execu-
cao do Bubble Sort com carga méaxima (2'° elementos) revela padrdes distintos que explicam
por que, apesar dos tempos de resposta similares (kOs: 1,456s; k3s: 1,472s; MicroK8s: 1,480s

29

— diferenca maxima de apenas 1,6%), as estratégias de uso de recursos diferem significativa-
mente.

Figura 5 — Comparacao de Uso de CPU por N6 (Bubble Sort 2'° items no vetor).

Distribuicao
. kOs
16 ™ k3s
B microk8s

14.76%

14 4

12 A

10

8.42%

Uso Médio de CPU (usr) %

5.38%

control-plane worker-1 worker-2

Fonte: Elaborado pelo autor

O kOs apresentou o perfil mais eficiente em termos de recursos, combinando o menor
consumo de RAM em todos 0s nds com uso de CPU equivalente ao k3s, resultando no me-
lhor tempo de resposta. Essa eficiéncia demonstra que, para cargas sequenciais onde nao ha
beneficio em paralelizacao, a economia de memoria nao prejudica o desempenho. O kOs ofi-
miza a alocacao de recursos ao evitar estruturas de gerenciamento supérfluas para este tipo de
carga, tornando-se a opgao ideal para ambientes com restricdes severas de RAM que executam
predominantemente tarefas sequenciais.

Em contraste, 0 k3s exibiu 0 maior consumo de RAM em todos os nés (especialmente
no plano de controle/trabalho), apesar de manter uso de CPU similar ao k0s. Essa alocacgéao
adicional de memdria, que foi vantajosa no teste de Fibonacci, ndo gerou beneficios no Bubble
Sort — o tempo de resposta foi apenas 1,1% superior ao k0s. Isso indica que a estratégia do
k3s de investir em memoria para otimizar distribuicdo de carga é eficaz apenas em cenarios
com paralelismo real, representando sobrecarga desnecessaria em processamento sequencial.

A distribuicao MicroK8s apresentou padrao intermediario de consumo de RAM e uso
desbalanceado de CPU, com menor utilizagdo no plano de controle/trabalho porém maior no
né de trabalho 2. Esse desbalanceamento, embora ndo tenha impactado significativamente
o tempo de resposta devido a natureza nao-paralela da carga, evidencia ineficiéncias no es-
calonamento: idealmente, em cargas sequenciais, a distribuicdo de uso de CPU deveria ser
homogénea entre os nds. O tempo de resposta ligeiramente inferior (1,480s) apesar do uso

30

Figura 6 — Comparacido de Uso de RAM por N6 (Bubble Sort 2'° items no vetor).

Distribuigdo
KOs
e k3s

17501 B microk8s

1653.2 MB

1500
1421.2 MB

1346.4 MB

un
N
ul
o
L

1000 1

854.7 MB
814.8 MB

Uso Médio de RAM (MB)

750 1 732.9 MB

712.5 MB 725.3 MB

695.2 MB

500

2501

control-plane worker-1 worker-2

Fonte: Elaborado pelo autor

equilibrado de recursos sugere que a sobrecarga de gerenciamento do MicroK8s permanece
presente mesmo em cenarios sequenciais.

Em sintese, para cargas sequenciais intensivas em CPU, a eficiéncia no uso de RAM
torna-se mais relevante que a capacidade de distribuicao, pois ndo ha beneficio em parale-
lizacdo. O kOs demonstra ser a distribuicAo mais adequada ao combinar menor footprint de
memoéria com desempenho equivalente, enquanto o k3s apresenta sobrecarga de RAM sem
ganhos proporcionais. Esses resultados contrastam diretamente com o teste de Fibonacci, evi-
denciando que a escolha da distribuicdo deve considerar primordialmente a natureza da carga
de trabalho (paralela versus sequencial) e as restricoes de recursos do ambiente.

31

6 CONSIDERAGOES FINAIS

Este Trabalho teve como objetivo principal avaliar a viabilidade e o0 desempenho de um
cluster Kubernetes em computadores com poder computacional limitado. Os resultados confir-
maram a viabilidade técnica da proposta, demonstrando que é possivel obter um desempenho
satisfatorio em aplicacoes stateless ao reutilizar hardware obsoleto.

O desempenho superior foi alcangado em aplicagdes que permitem o uso intensivo de
requisicbes paralelas e distribuem a carga de trabalho de forma eficiente (Teste Fibonacci),
com destaque para 0 k3s. Em contraste, em tarefas sequenciais e dependentes da CPU (Teste
Bubble Sort), o desempenho foi limitado pelas caracteristicas do hardware, e as diferencas
entre as distribuicdes foram minimas em termos de RPS, mas notaveis na eficiéncia de uso dos
recursos.

Os testes verificaram empiricamente que clusters Kubernetes dentro dos testes realiza-
dos neste trabalho sdo mais eficazes ao lidar com multiplas requisicdes de baixa complexidade
do que com poucas requisigdes de alta carga computacional. Isso ocorre porque 0 Kubernetes
é projetado para distribuir requisicdes entre os nés, mas nao para paralelizar o processamento
interno de uma Unica requisi¢ao, salvo em aplicagdes com chamadas internas entre containers.

Conclui-se que a proposta de reutilizar hardware limitado em ambientes de cluster repre-
senta uma alternativa promissora do ponto de vista econdmico e sustentavel. Como sugestao
para trabalhos recomenda-se a validagcdo do desempenho em cenarios mais complexos, como
0 uso de bancos de dados distribuidos nos testes ou a implementagédo de scripts de teste em
linguagens compiladas para reduzir a interferéncia do tempo de execugéo do script na analise
de desempenho.

32

REFERENCIAS

APPVIA. Why is Kubernetes Called K8s? 2024. Disponivel em: https://www.appvia.io/blog/
why-is-kubernetes-called-k8s. Acesso em: 27 set. 2025.

AXIOS. Axios - Promise based HTTP client for the browser and node.js. 2024. Disponivel
em: https://axios-http.com/. Acesso em: 10 set. 2025.

BIGGAR, P.; GREGG, D. Sorting in the Presence of Branch Prediction and Caches. Dublin,
Ireland, 2005. Disponivel em: https://www.scss.tcd.ie/publications/tech-reports/reports.05/
TCD-CS-2005-57.pdf.

CANONICAL. MicroK8s Documentation. 2024. Disponivel em: https://microk8s.io/docs.
Acesso em: 18 nov. 2024.

CNCEF. Cluster Architecture. Onling, 2024. Disponivel em: https://kubernetes.io/docs/concepts/
architecture/. Acesso em: 18 nov. 2024.

CNCF. Service. 2024. Disponivel em: https://kubernetes.io/docs/concepts/services-networking/
service/. Acesso em: 8 set. 2025.

CNCF. MetalLB. 2025. Disponivel em: https://metallb.io/. Acesso em: 10 set. 2025.

CNCEF. Virtual IPs and Service Proxies. 2025. Disponivel em: https://kubernetes.io/docs/
reference/networking/virtual-ips/. Acesso em: 10 set. 2025.

CNCF . Overview. Online, 2024. Disponivel em: https://kubernetes.io/docs/concepts/overview;/.
Acesso em: 18 nov. 2024.

CNCF . Pods. Online, 2024. Disponivel em: https://kubernetes.io/docs/concepts/workloads/
pods/. Acesso em: 20 nov. 2024.

CORMEN, T. H. et al. Algoritmos. 4. ed.. ed. Rio de Janeiro: GEN LTC, 2024.
ISBN 9788595159914. Disponivel em: https://app.minhabiblioteca.com.br/reader/books/
9788595159914/. Acesso em: 27 set. 2025.

DEBIAN. Debian — Reasons to use Debian. 2024. Accessed: 20 Nov. 2024. Disponivel em:
https://www.debian.org/intro/why_debian.

DOCKER. Docker. 2024. Disponivel em: https://www.docker.com/. Acesso em: 20 nov. 2024.

ENCODE. HTTPX. 2024. Disponivel em: https://www.python-httpx.org/. Acesso em: 10 set.
2025.

EXPRESS. Express - Node.js web application framework. 2024. Disponivel em:
https://expressjs.com/. Acesso em: 10 set. 2025.

GEEKSFORGEEKS. What is Load Balancer? 2025. Disponivel em: https://www.
geeksforgeeks.org/system-design/what-is-load-balancer-system-design/. Acesso em: 10 set.
2025.

GOOGLE . What Are Containers? 2024. Disponivel em: https://cloud.google.com/learn/
what-are-containers. Acesso em: 6 nov. 2024.

GOOGLE . What is container orchestration? 2024. Disponivel em: https://cloud.google.com/
discover/what-is-container-orchestration?hl=en. Acesso em: 18 nov. 2024.

https://www.appvia.io/blog/why-is-kubernetes-called-k8s
https://www.appvia.io/blog/why-is-kubernetes-called-k8s
https://axios-http.com/
https://www.scss.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-57.pdf
https://www.scss.tcd.ie/publications/tech-reports/reports.05/TCD-CS-2005-57.pdf
https://microk8s.io/docs
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://metallb.io/
https://kubernetes.io/docs/reference/networking/virtual-ips/
https://kubernetes.io/docs/reference/networking/virtual-ips/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://app.minhabiblioteca.com.br/reader/books/9788595159914/
https://app.minhabiblioteca.com.br/reader/books/9788595159914/
https://www.debian.org/intro/why_debian
https://www.docker.com/
https://www.python-httpx.org/
https://expressjs.com/
https://www.geeksforgeeks.org/system-design/what-is-load-balancer-system-design/
https://www.geeksforgeeks.org/system-design/what-is-load-balancer-system-design/
https://cloud.google.com/learn/what-are-containers
https://cloud.google.com/learn/what-are-containers
https://cloud.google.com/discover/what-is-container-orchestration?hl=en
https://cloud.google.com/discover/what-is-container-orchestration?hl=en

33

GROUP, P. Lightweight Kubernetes Distributions. 2023. Disponivel em: https://
programming-group.com/assets/pdf/papers/2023_Lightweight-Kubernetes-Distributions.pdf.
Acesso em: 20 nov. 2024.

IBM. What is Cluster Computing? 2024. Disponivel em: https://www.ibm.com/think/topics/
cluster-computing. Acesso em: 18 nov. 2024.

Jakob Nielsen. Response Times: The Three Important Limits. 2025. Disponivel em:
https://www.nngroup.com/articles/response-times-3-important-limits/. Acesso em: 16 out. 2025.

KOS PROJECT. KOs Documentation. 2024. Disponivel em: https://kOsproject.io/. Acesso em:
20 nov. 2024.

MONTEIRO, E. R. et al. DevOps. SAGAH, 2021. 154 p. ISBN 9786556901725. Disponivel em:
https://app.minhabiblioteca.com.br/reader/books/9786556901725/. Acesso em: 6 nov. 2024.

MORSE, G. How to turn your old hardware into a Kuberne-

tes cluster. 2023. Disponivel em: https://learnfastmakethings.com/p/
how-to-turn-your-old-hardware-into-a-kubernetes-cluster-129d17aa8704. Acesso em:
20 nov. 2024.

NODE.JS. Node.js v22.19.0 Documentation. 2024. Disponivel em: https://nodejs.org/docs/
latest-v22.x/api/documentation.html. Acesso em: 10 set. 2025.

OPENSSH. OpenSSH: OpenSSH. 2025. Disponivel em: https://www.openssh.com/. Acesso
em: 10 set. 2025.

PARAMIKO. Welcome to Paramiko! 2024. Disponivel em: https://www.paramiko.org/. Acesso
em: 10 set. 2025.

PYTHON SOFTWARE FOUNDATION. Python Documentation. 2025. Disponivel em:
https://docs.python.org/3/. Acesso em: 10 set. 2025.

Rancher Labs . K3s Documentation. 2024. Disponivel em: https://k3s.io/. Acesso em: 20 nov.
2024.

SILVA, J. Implementando um sistema de conteinerizacao com Kubernetes usando GitOps.
2022. Trabalho de Conclusao de Curso (Curso de Ciéncia da Computagédo) — Universidade
Federal de Pernambuco, Recife. Disponivel em: https://www.cin.ufpe.br/~tg/2022-1/tg_CC/tg_
pgrr.pdf. Acesso em: 20 nov. 2024.

SYSSTAT. sysstat. 2024. Disponivel em: https://github.com/sysstat/sysstat. Acesso em: 10 set.
2025.

https://programming-group.com/assets/pdf/papers/2023_Lightweight-Kubernetes-Distributions.pdf
https://programming-group.com/assets/pdf/papers/2023_Lightweight-Kubernetes-Distributions.pdf
https://www.ibm.com/think/topics/cluster-computing
https://www.ibm.com/think/topics/cluster-computing
https://www.nngroup.com/articles/response-times-3-important-limits/
https://k0sproject.io/
https://app.minhabiblioteca.com.br/reader/books/9786556901725/
https://learnfastmakethings.com/p/how-to-turn-your-old-hardware-into-a-kubernetes-cluster-129d17aa8704
https://learnfastmakethings.com/p/how-to-turn-your-old-hardware-into-a-kubernetes-cluster-129d17aa8704
https://nodejs.org/docs/latest-v22.x/api/documentation.html
https://nodejs.org/docs/latest-v22.x/api/documentation.html
https://www.openssh.com/
https://www.paramiko.org/
https://docs.python.org/3/
https://k3s.io/
https://www.cin.ufpe.br/~tg/2022-1/tg_CC/tg_pgrr.pdf
https://www.cin.ufpe.br/~tg/2022-1/tg_CC/tg_pgrr.pdf
https://github.com/sysstat/sysstat

34

GLOSSARIO

stateless termo em inglés que significa "sem estado". Em computacgao, refere-se a sistemas ou
aplicacdes que nao mantém informacoes sobre o estado ou contexto entre diferentes in-
teracdes ou sessdes. Cada requisi¢ao é tratada de forma independente, sem depender
de dados armazenados de interagdes anteriores. 11

APENDICES

APENDICE A — Script de teste e aplicacao de teste

36

37

Script de teste que implementa a metodologia de teste e aplicacdo de teste que imple-
menta os algoritmos de teste podem ser acessados em: https://github.com/FaboBorgesLima/
cluster-tester/releases/tag/v2

https://github.com/FaboBorgesLima/cluster-tester/releases/tag/v2
https://github.com/FaboBorgesLima/cluster-tester/releases/tag/v2

	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	1.2 Estrutura do trabalho

	2 Referencial teórico
	2.1 Clusters
	2.2 Containers
	2.2.1 Orquestração de containers

	2.3 Kubernetes
	2.3.1 Balanceamento de Carga
	2.3.2 Distribuições do Kubernetes

	2.4 Computadores com poder computacional limitado

	3 Trabalhos Relacionados
	4 Materiais e Métodos
	4.1 Materiais
	4.1.1 Hardware
	4.1.2 Software

	4.2 Métodos
	4.2.1 Testes de Interação do cluster
	4.2.2 Ferramenta de automação dos testes
	4.2.3 Métricas

	5 Resultados Experimentais
	5.1 Resultados por Tipo de Teste
	5.2 Análise de Desempenho
	5.2.1 Série de Fibonacci (Processamento distribuído)
	5.2.2 Bubble Sort (Processamento Sequencial)

	6 Considerações Finais
	Referências
	Glossário
	Apêndices
	A Script de teste e aplicação de teste

