UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA

RAUL FERREIRA DA ROCHA

ESTRATEGIA DE NOTIFICACOES NO SISTEMA DE GESTAO DE TCC DO
CURSO DE SISTEMAS PARA INTERNET: DEFINICAO E IMPLEMENTACAO

GUARAPUAVA
2025



RAUL FERREIRA DA ROCHA

ESTRATEGIA DE NOTIFICACOES NO SISTEMA DE GESTAO DE TCC DO
CURSO DE SISTEMAS PARA INTERNET: DEFINICAO E IMPLEMENTACAO

Notification Strategy in the Thesis Management System of the Internet

Systems Course: Definition and Implementation

Trabalho de Conclusao de Curso de Graduacgao
apresentado como requisito para obtengédo do
titulo de Tecndlogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnolégica Federal do Parana.

Orientador : Prof°. Dre. Diego Marczal

Coorientador: Prof?. Dr?. Renata Luiza Stange

GUARAPUAVA
2025

Esta licenca permite compartilhamento, remixe, adaptagéo e criagdo a partir do traba-

|@ @ | Iho, mesmo para fins comerciais, desde que sejam atribuidos créditos ao(s) autor(es).

Conteudos elaborados por terceiros, citados e referenciados nesta obra ndo sao co-
4.0 Internacional  bertos pela licenga.



https://creativecommons.org/licenses/by/4.0/deed.pt_BR

RAUL FERREIRA DA ROCHA

ESTRATEGIA DE NOTIFICAGOES NO SISTEMA DE GESTAO DE TCC DO
CURSO DE SISTEMAS PARA INTERNET: DEFINICAO E IMPLEMENTACAO

Trabalho de Conclusao de Curso de Graduacao
apresentado como requisito para obtencéo do
titulo de Tecndlogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnolégica Federal do Parana.

Data de aprovacéo: 01/Dezembro/2025

Diego Marczal
Doutor
Universidade Tecnoldgica Federal do Parana

Andres Jessé Porfirio
Doutor
Universidade Tecnoldgica Federal do Parana

Dénis Lucas Silva
Mestre
Universidade Tecnoldgica Federal do Parana

GUARAPUAVA
2025



RESUMO

O Sistema de Gerenciamento de Trabalhos de Conclusdo de Curso (SGTCC) desempenha
papel central na organizacdo das etapas de entrega, avaliacdo e acompanhamento dos TCCs
do curso de Sistemas para Internet da UTFPR — Campus Guarapuava. Entretanto, mesmo
apods diversas evolugdes ao longo dos anos, o sistema ainda apresentava lacunas relacionadas
a comunicacao entre seus usuarios, especialmente no que se refere ao acompanhamento de
prazos, pendéncias documentais e eventos como bancas e reunides. Diante desse cenario, este
trabalho teve como objetivo definir e implementar uma estratégia de notificagbes automaticas
capaz de aprimorar o fluxo de comunicacao entre coordenadores, docentes e académicos sem
a necessidade de intervencdo manual. A metodologia empregada envolveu o levantamento
€ a priorizagdo dos requisitos por meio da analise dos fluxos do sistema e da aplicacao de
um formulario aos usuarios, utilizando o método MoSCoW para classificagcado. A partir disso,
foram modeladas regras de notificacao, templates de mensagens e fluxos de envio, integrados
ao SGTCC utilizando Ruby on Rails, Active Job e Solid Queue, com arquitetura assincrona
e banco de dados dedicado exclusivamente ao médulo de notificagdes. O desenvolvimento
contemplou desde a configuracdo do ambiente até a estruturacdo de servigos, modelos e
hooks responsaveis pela geracio e processamento das notificagdes. Como resultados, foram
implementadas notificacoes de atualizacao de calendario, pendéncias de assinatura, prazos de
envio, agendamento e confirmacao de bancas, registros de reunides, submissdo de termos e
outras situacoes criticas para o andamento do TCC. A suite de testes também foi ampliada,
garantindo maior confiabilidade as funcionalidades implementadas. Conclui-se que a estratégia
de notificagbes desenvolvida contribuiu para melhorar a organizagdo, a transparéncia e o
acompanhamento das atividades do TCC, além de estabelecer bases estruturais para futuras

extensdes, como a integracdo com outros canais de comunicagao.

Palavras-chave: notificacdes; sistemas académicos; gestédo de tcc; automacao; ruby on rails.



ABSTRACT

The Thesis Management System (SGTCC) plays a central role in organizing the stages of
submission, evaluation, and monitoring of final papers in the Internet Systems course at UTFPR
— Guarapuava. However, even after several improvements over the years, the system still
presented gaps related to communication among its users, particularly regarding the monitoring
of deadlines, document pendencies, and academic events such as meetings and examination
boards. In this context, this work aimed to define and implement an automatic notification
strategy capable of improving the communication flow among coordinators, faculty member,
and students without requiring manual intervention. The methodology included identifying and
prioritizing requirements through the analysis of system workflows and the application of a
user questionnaire, employing the MoSCoW method for classification. Based on these findings,
notification rules, message templates, and delivery flows were modeled and integrated into the
SGTCC using Ruby on Rails, Active Job, and Solid Queue, with an asynchronous architecture
supported by a database dedicated exclusively to the notification module. The development
process ranged from environment configuration to the structuring of services, models, and
hooks responsible for generating and processing notifications. As a result, notifications were
implemented for calendar updates, signature pendencies, submission deadlines, scheduling
and confirmation of examination boards, meeting records, term submissions, and other critical
situations for the progress of the final paper process. The test suite was also expanded,
ensuring greater reliability of the implemented functionalities. It is concluded that the developed
notification strategy contributes to improving organization, transparency, and the monitoring of
TCC activities, while also establishing structural foundations for future extensions, such as the

integration with additional communication channels.

Keywords: notifications; academic systems; tcc management; automation; ruby on rails.



Siglas

CD

Cl
SGTCC
Sl

SMS
TCC
UTFPR
UXx

LISTA DE ABREVIATURAS E SIGLAS

Entrega Continua

Integragéo Continua

Sistema de Gerenciamento de Trabalho de Conclusao de Curso
Sistemas para Internet

Servico de Mensagens Curtas, do inglés Short Message Service
Trabalho de Concluséo de Curso

Universidade Tecnoldgica Federal do Parana

Experiéncia do usuario, do inglés User Experience



1.1
1.1.1
1.1.2
1.2

2.1
2.2
2.2.1
222

3.1
3.2
3.3
3.3.1
3.3.2

4.1

411
41.2
4.1.3
4.2

4.2.1
422
4.2.3
424
4.2.5
4.2.6
4.3

4.3.1

SUMARIO

INTRODUCAOD . . . . . ittt i e e e e e e e e e e e e e e e e 7
Objetivos . . . . . . . . . . e e e e e e e e e e e 8
Objetivogeral . . . . . . . . e 8
Objetivos especificos . . . . . . . . . . .o 8
Justificativa . . . . . . . . ... ... . . e 9
MATERIAISEMETODOS . . . . . ot ot e e e e e e e e e e e e 10
Materiais . . . . . . . . . . . . e e e e e 10
Métodos . . . . . . . . o i e e e e e e e e e e e 11
Levantamento e Priorizagéo de Requisitos . . . . . . . ... .. ... ... 11
Processo de Desenvolvimento . . . . . . . .. . .. ... L. 12
ANALISEEPROJETO . . . . . vttt i it ettt e e 14
DescricAo do SGTCC . . . . . . . . . i i i it e et e e e e e e e e s 14
Levantamento dosrequisitos . . . . .. ... .. ... o000 15
Anadlisede Requisitos . . . . .. ... ... ... .. . . 000, 17
Histériasde usudrio . . . . . . . . . . . .. 20
Prototiposde Telas . . . . . . . . . . . . . . ... 22
ESTRATEGIAS DE NOTIFICACAODOSGTCC . ... ........... 24
Definicdo . . . . .. . . . . @ @i i e e e e e 24
Modelos de notificacdo . . . . . . . . . . . . .. 25
Templatesde E-mail . . . . . . .. ... 29
Fluxode Envio . . . . . . . . . . L 31
Implementacao das funcionalidades . . ... ... ............ 33
Configuracao do ambiente de desenvolvimento . . . . . . ... .. ... .. 34
Estruturacdo das classes de notificacdo . . . . . . . . . . ... ... 37
Processamento assincrono com Active Job e Solid Queue . . . . . . .. .. 37
Arquitetura de Servigos (Service Objects) . . . . . . . . . ... . ... ... 38
Integragéo com Eventos do Sistema (Hooks) . . . . .. ... ... .. ... 40
Estratégiade Testese Validagdo . . . . . ... ... .. ... ....... 41
Resultadosobtidos . . . . . . ... ... ... ... 43
Métricas . . . . . . . e 44



CONSIDERAGOES FINAIS

REFERENCIAS . ... ..



1 INTRODUCAO

A realizacao de um Trabalho de Conclusao de Curso (TCC) constitui requisito obrigaté-
rio para a conclusao e obtencao do diploma em diversos cursos de graduacao, representando
0 momento em que o estudante aplica os conhecimentos adquiridos ao longo do curso em uma
ou mais areas de formacao (COINT, 2023). Esse processo, no entanto, envolve a produgao e o
gerenciamento de multiplos documentos, o que pode dificultar sua organizacao e acompanha-
mento. Com o intuito de centralizar e facilitar esse gerenciamento, foi desenvolvido o Sistema
de Gerenciamento de Trabalho de Conclusao de Curso (SGTCC), sistema que busca simplificar
as etapas de entrega e avaliacao dos trabalhos, além de reduzir a necessidade de documentos
impressos. Assim como ocorre com diversas aplicacées, 0 SGTCC encontra-se em constante
evolucao, visando atender as necessidades dos usudrios e tornar mais ageis tarefas como a as-
sinatura de documentos, 0 agendamento de bancas e a avaliacao de defesas. Contudo, mesmo
apds as atualizagdes implementadas por Ferreira (2015), Silva (2019), Lima (2023) e Luz (2024),
o sistema ainda apresenta oportunidades de aprimoramento.

O cumprimento dos prazos durante o desenvolvimento do TCC é essencial para o bom
andamento do processo, uma vez que atrasos podem gerar prejuizos tanto para os discentes
quanto para os docentes. Para os estudantes, 0 ndo cumprimento de prazos pode resultar na
reprovagao em etapas do TCC e no consequente adiamento da conclusao do curso. Para os pro-
fessores, pode comprometer o planejamento das atividades, dificultar a avaliagdo adequada dos
trabalhos e gerar sobrecarga de tarefas. Além disso, os atrasos afetam diretamente a organiza-
¢ao das bancas. Outro fator que impacta o gerenciamento do TCC é a auséncia de assinaturas
em documentos, 0 que impede sua validagao formal e o registro adequado dos tramites. Tanto
estudantes quanto docentes podem ser responsaveis pela ndo entrega de documentos ou pela
falta de assinaturas dentro dos prazos estabelecidos.

Diante desses desafios, esta proposta visa oferecer uma solugcdo que mantenha todos
os envolvidos no processo de gerenciamento do TCC devidamente informados sobre prazos e
pendéncias, a fim de minimizar os prejuizos mencionados e prevenir outros que possam surgir
em decorréncia do ndo cumprimento das etapas. Para isso, podem ser adotadas diferentes es-
tratégias de notificacado, cujo objetivo € comunicar os usuarios de maneira eficiente, promovendo
maior engajamento. Essas estratégias podem ser implementadas por meio de notificagcdes au-
tomaticas por e-mail, mensagens em aplicativos de comunicagao ou lembretes via Servigo de
Mensagens Curtas, do inglés Short Message Service (SMS).

O desenvolvimento de uma estratégia de notificagdo para o SGTCC envolve desafios
técnicos e funcionais. Entre eles, destaca-se a definicdo dos tipos de notificacdo mais ade-
quados a cada situacéo, de modo a equilibrar efetividade e evitar o excesso de comunicacoes
que possam ser ignoradas pelos usuarios. Além disso, & necessario garantir a integridade e a
confiabilidade das informacgdes transmitidas, assegurando que os dados sobre prazos e pen-
déncias estejam sempre atualizados e sincronizados com o sistema. Outro aspecto relevante



diz respeito a privacidade dos usuarios e a conformidade com as normas de protecao de da-
dos, especialmente no envio de informagdes por e-mail ou SMS. Do ponto de vista técnico, a
implementagéo requer integracdo com servigos externos de envio de mensagens e o desenvol-
vimento de uma légica eficiente para o disparo automatico das notificacoes, de forma escalavel
e sustentavel. Também devem ser considerados aspectos de usabilidade, assegurando que as
mensagens sejam compreensiveis e que efetivamente contribuam para a gestéo eficiente do
TCC.

Dessa forma, este trabalho propés definir e implementar uma estratégia de notificagéo
no SGTCC, com o objetivo de garantir que todos os participantes do processo de TCC estejam
cientes dos prazos e atualizagdes, assegurando o cumprimento adequado de todas as etapas
previstas.

1.1 Objetivos

Neste trecho, sdo descritos os objetivos que orientaram o desenvolvimento deste traba-
Iho, tanto em nivel geral quanto especifico.

1.1.1 Objetivo geral

Formular e implementar uma estratégia de notificacées automaticas de prazos e pen-
déncias no sistema SGTCC, visando aprimorar o0 acompanhamento e a gestao do processo de
TCC.

1.1.2 Objetivos especificos

+ |dentificar os pontos do processo de TCC que demandam notificagcbes automaticas,
com base na analise do fluxo de atividades e nas necessidades dos usuarios do
SGTCC.

* Definir os tipos, os canais € os momentos adequados para o envio das notificacdes,
considerando os diferentes perfis de usuarios (discentes, docentes e coordenadores).

 Elaborar a estratégia de notificacées automaticas, detalhando a légica de acionamento,
a frequéncia, a personalizagéao e o conteldo das mensagens.

» Desenvolver e integrar a funcionalidade de notificagdes ao sistema SGTCC, utilizando
0s recursos disponiveis no framework Ruby on Rails.



1.2 Justificativa

Com o objetivo de facilitar o gerenciamento dos TCCs do curso de Sistemas para Inter-
net (SI) do campus Guarapuava da Universidade Tecnolégica Federal do Parana (UTFPR), foi
desenvolvido o SGTCC. Apesar de sua utilidade e importancia para o curso, o sistema ainda
apresenta oportunidades de aprimoramento, especialmente no que se refere a comunicacao
proativa com seus usuarios.

Uma das principais lacunas apontadas pelos usuarios é a auséncia de notificacdes que
os informem sobre prazos e pendéncias relacionadas ao processo do TCC. Essa falta de co-
municacdo pode ocasionar atrasos na entrega de documentos e na realizagdo de bancas de
defesa, 0 que pode, consequentemente, gerar reprovacao em etapas do TCC, retrabalho e até
atrasos na colagdo de grau dos discentes. Outro problema recorrente diz respeito a nao rea-
lizacdo de assinaturas dentro dos prazos estabelecidos, 0 que pode comprometer a emissado
de documentos oficiais, gerando entraves burocraticos. Soma-se a isso a inexisténcia de avisos
sobre eventos importantes do processo, como 0 agendamento, a alteragdo ou o cancelamento
de bancas, bem como sobre mudangas nos prazos, o que pode gerar confusdo e desorganiza-
cao entre os participantes. Além disso, os envolvidos no processo nao dispéem de uma maneira
simples e clara de acompanhar o tempo decorrido desde o inicio do TCC e o tempo restante
para a conclusao de suas etapas, o que frequentemente leva ao acimulo de tarefas proximo ao
encerramento dos prazos.

Para suprir essas demandas, a formulagédo e implementacao de uma estratégia de noti-
ficacdo se apresentam como uma solucao eficaz, ja amplamente utilizada em diversas aplica-
coes. Desse modo, o desenvolvimento dessa funcionalidade no SGTCC visa manter os usuarios
constantemente informados sobre prazos, pendéncias e atualizagées do processo, bem como
sobre a criagdo, alteragao e cancelamento de bancas de defesa. A definicdo da estratégia ado-
tada foi fundamentada nas necessidades e nas experiéncias relatadas pelos préprios usuarios,
além de considerar praticas consolidadas em outras aplicacées que enfrentam desafios seme-
Ihantes.



10

2 MATERIAIS E METODOS

Neste capitulo estdo descritos os materiais, ferramentas e métodos utilizados para for-
mular e implementar uma estratégia de notificacdes para o SGTCC.

2.1 Materiais

Dentre os materiais descritos a seguir, estao incluidas ferramentas e tecnologias utiliza-
das para o planejamento e desenvolvimento:

* Ruby on Rails: Ja utilizado para o desenvolvimento do SGTCC, o Ruby on Rails é
um framework full-stack de codigo aberto para a linguagem Ruby. Ele facilita a cria-
cao de aplicacbes web robustas e organizadas, adotando convengdes que reduzem a
necessidade de configuracdes manuais, promovendo o0 uso de boas praticas de de-
senvolvimento e acelerando o processo de codificacao (RAILS, 2025).

+ Git e GitHub: O Git é um sistema de controle de versao distribuido que permite acom-
panhar e gerenciar mudangas no codigo-fonte ao longo do tempo, facilitando a co-
laboragé@o entre desenvolvedores e garantindo a integridade do projeto (GIT, 2025).
Ja o GitHub é uma plataforma baseada na nuvem que utiliza o Git para hospedar
e versionar repositérios, permitindo colaboragdo em tempo real, integracao continua
e automacao de fluxos de trabalho (GITHUB, 2025). A escolha dessas ferramentas
deve-se ao suporte robusto a versionamento, ao histérico detalhado de alteragbes e a
integracao nativa com pipelines de automagao, essenciais para acompanhar as evolu-
¢bes no moédulo de notificagdes, além da utilizacao prévia dessas tecnologias para o
gerenciamento do SGTCC.

» Figma: Ferramenta de design de interface baseada na web que permite colaboragéo
em tempo real entre designers e desenvolvedores. Com recursos de prototipagem,
componentes reutilizaveis e compartilhamento facilitado, o Figma é utilizado para a
criacao e validagdo visual de interfaces (FIGMA, 2025). Foi escolhido por permitir a
rapida criacao de prototipos das telas relacionadas as notificagoes.

» Docker: Plataforma de virtualizacao leve que permite empacotar aplicagdes e suas
dependéncias em containers, garantindo consisténcia entre ambientes de desenvol-
vimento, testes e produgdo. Facilita a portabilidade, escalabilidade e automagao de
processos de implantagao (DOCKER, 2025). A utilizacao do Docker para padronizar o
ambiente de desenvolvimento ja estava presente desde os estagios anteriores do de-
senvolvimento, garantindo reprodutibilidade nos testes e evitando inconsisténcias entre
diferentes maquinas.



11

» SQLite: Banco de dados relacional leve, simples e amplamente utilizado em aplica-
¢bes que necessitam de um armazenamento local rapido e sem a complexidade de
um servidor dedicado. Por ser baseado em arquivos, o SQLite apresenta baixo custo
de manutencao e excelente desempenho para operacdes de leitura e escrita em cena-
rios de menor escala. No contexto deste trabalho, foi utilizado como banco de dados
secundario especificamente para o médulo de notificagdes, armazenando as notifica-
cOes geradas e afila de jobs do ActiveJob. Sua escolha se deve a necessidade de isolar
0 armazenamento e o processamento de notificagbes do banco principal do SGTCC,
garantindo maior independéncia, menor impacto no desempenho geral do sistema e
simplificando a configuracdo do ambiente de testes.

» ClickUp: Plataforma de gerenciamento de projetos que centraliza tarefas, cronogra-
mas, documentos e comunicagao da equipe em um Unico ambiente. Sua flexibilidade
e ampla capacidade de personalizacdo ajudam a estruturar e acompanhar as etapas
do projeto, facilitando a organizacdo, o cumprimento de prazos e a produtividade da
equipe envolvida (CLICKUP, 2025). Foi utilizado para planejar, acompanhar e docu-
mentar o progresso do desenvolvimento das funcionalidades, garantindo maior consis-
téncia e controle sobre as diversas etapas do desenvolvimento.

2.2 Métodos

Para formular e implementar um sistema de notificagbes no SGTCC sdo adotados os
seguintes passos:

2.2.1 Levantamento e Priorizacdo de Requisitos

Para formular a estratégia de notificagbes do SGTCC, inicialmente identifica-se quais
situagdes do sistema demandam comunicagdao aos usuarios. Esse processo tem inicio com
uma andlise das funcionalidades existentes, listando-se todas as acdes que potencialmente
podem gerar notificagcdes, de forma a construir um pré-levantamento das situa¢des notificaveis.

Com o objetivo de validar esse levantamento e complementar possiveis lacunas, aplica-
se um formulario aos usuarios do SGTCC, incluindo docentes e discentes do curso de Tec-
nologia em Sistemas para Internet da UTFPR — Campus Guarapuava. As respostas obtidas
permitem identificar novas demandas de notificagdo, além de contribuir para a priorizagdo das
ja mapeadas.

A organizagéo e prioriza¢ao dos requisitos sao realizadas utilizando o Método MoSCoW,
técnica amplamente empregada para classificacao de itens em projetos de software. O método
categoriza cada notificacdo em quatro grupos — Must Have, Should Have, Could Have e Won't



12

Have — permitindo definir sua importancia relativa e orientar a execugao do desenvolvimento
conforme os recursos disponiveis e o impacto esperado no sistema.

Originalmente desenvolvido por Dai Clegg, o Método MoSCoW destaca-se por sua sim-
plicidade e aplicabilidade em diferentes contextos, auxiliando na tomada de decisdes e propor-
cionando uma visdo estruturada das prioridades do projeto. A Figura 1 apresenta um resumo
visual da técnica (SEBRAE, 2022).

MIS | C

MUST SHOULD COULD
HAVE HAVE HAVE

DEVE DEVERIA o)0)3:)'W NAOTERA
TER TER TER (por enquanto)

Aquilo que é Tudo aquilo que Tudo aquilo

considerado é importante quendo é
obrigatério ou ter, mas ndo é essencial, mas
imprescindivel imprescindivel |l seria bom terou
para o projeto para o projeto poderia serum

ou negdcio. ou negécio. diferencial.

Figura 1 — Método MoSCoW
Fonte: Sebrae (2022).

2.2.2 Processo de Desenvolvimento

ApOs levantar e priorizar os requisitos de notificacao, inicia-se o processo de desenvol-
vimento. Essa etapa comega com a subdivisdo dos requisitos em tarefas menores e individuais
a serem implementadas. A gestao durante todo o processo de desenvolvimento é realizada por
meio do ClickUp, permitindo organizar as tarefas por ordem de importancia e por seu estado
atual, facilitando o acompanhamento do desenvolvimento.

O fluxo de trabalho Git é organizado por meio do GitFlow, uma metodologia que divide as
ramificagoes (branches) do cédigo em diferentes tipos, de acordo com a funcéo desempenhada
por cada uma, melhorando a organizagao e facilitando a colaboragdo durante o processo de
desenvolvimento. As divisdes de branches sao as seguintes (ATLASSIAN, 2025):

» Main: Uma das duas ramifica¢des principais, armazena o histérico do langamento ofi-
cial, contendo um histérico simplificado das alteragdes do projeto.

» Develop: A outra ramifica¢éo principal, serve como uma ramificagao para a integracao
de recursos, mantendo um histérico completo das altera¢des do projeto.



13

» Feature: Ramificacbes temporarias para a implementagéo de recursos, criadas a partir
da ultima versdo da branch develop, sendo integradas novamente a branch develop
depois de concluidas.

» Release: Ramificacdo intermediaria entre a principal e a de desenvolvimento, criada
quando ha recursos suficientes para um langamento, contendo apenas atualizagdes
de seguranca ou relacionadas ao langamento. Ao fim, integra-se a branch main.

» Hotfix: Ramificacdo utilizada para correcoes rapidas de lancamentos em producao,
criada a partir da branch main e mesclada a ela apés a correcao.

Visando facilitar o processo de implementagcao apés o desenvolvimento, utiliza-se o con-
ceito de Integracdo Continua (Cl)/Entrega Continua (CD), uma automatizagdo do processo de
desenvolvimento, desde a codificacdo até a implementagao, agilizando o lancamento de no-
VOS recursos e corregoes, tornando o produto mais responsivo as necessidades dos usuarios.
Cl refere-se a automatizagéo de testes realizados ao mesclar branches na branch principal,
evitando conflitos de cddigo, identificando erros ou problemas de seguranca e verificando a
qualidade do cédigo. Ja o CD prepara e testa o cédigo para ser implementado em producéo,
automatizando o provisionamento da infraestrutura e o processo de langamento das aplicagoes,
empacotando todos os elementos necessarios para implantagao em qualquer ambiente (GitLab
Inc., 2025).

Com base nos requisitos priorizados, sao elaboradas Histérias de Usuério que des-
crevem as necessidades do ponto de vista dos diferentes perfis do sistema, como discentes,
docentes e coordenadores. Essas historias servem como guia para o desenvolvimento das fun-
cionalidades de notificacdo, garantindo que o sistema atenda as expectativas e aos fluxos reais
de uso do SGTCC.



14

3 ANALISE E PROJETO

Este capitulo descreve as etapas de analise e projeto do sistema de notificagdes pro-
posto para 0 SGTCC, abordando a descri¢cao do sistema, o levantamento e a analise dos requi-
sitos, bem como a definicdo da arquitetura de notificagao. O objetivo principal é garantir que as
funcionalidades implementadas atendam efetivamente as necessidades dos usuarios, promo-
vendo uma comunicacgao eficiente sobre prazos e eventos relevantes ao processo de TCC.

3.1 Descricao do SGTCC

No curso de Sl, o TCC é dividido em trés partes principais, cada uma com entregas
distintas e bancas de defesa: elas sao Proposta, Projeto e Monografia. Além disso, 0 processo
¢ dividido em duas unidades curriculares, ocupando dois semestres letivos. Nesse contexto de
tempo limitado, o cumprimento de prazos e a boa gestao do processo tornam-se importantes
(COINT, 2023).

Com base nisso, 0 SGTCC teve seu desenvolvimento iniciado em 2015, com o objetivo
de tornar digital a gestao das atividades referentes ao TCC do Curso de Sl do Campus Gua-
rapuava da UTFPR, visando centralizar as informagdes e regulamentos, além de simplificar os
processos necessarios (FERREIRA, 2015).

O projeto teve continuidade em 2019, sendo reestruturado e contando com a melhoria
nos modulos do sistema, como a criagdo de tipos de usuarios, o upload de documentos relaci-
onados ao TCC, o cadastro de reunibes realizadas e o agendamento de defesas. Além disso,
ocorreu a implementagéo de assinaturas eletrénicas, visando eliminar o uso de papel e tornar
toda a gestao digital. (SILVA, 2019).

Durante o segundo semestre de 2023, o sistema teve outras contribuigbes realizadas
pelos alunos da disciplina Desenvolvimento para Web 5 do curso de S, incluindo a criagdo de
novas funcionalidades, a corre¢éo de bugs e atualizagbes nas bibliotecas do projeto.

Contudo, ainda em 2023, outras melhorias foram realizadas, principalmente visando a
otimizacao das telas do sistema. Foram aplicadas técnicas de Experiéncia do usuario, do inglés
User Experience (UX) design, com foco na estética e funcionalidade, reorganizando e tornando
a usabilidade mais agradavel. Muitas alteracdes foram feitas com base em questionarios reali-
zados com os usuarios do sistema. Apds essas alteragoes, o resultado de um novo questionario
mostrou que houve uma grande melhoria na usabilidade do sistema (LIMA, 2023).

O desenvolvimento do SGTCC continua em andamento. Atualmente estd em curso um
projeto para a atualizacdo do Framework Rails e de outras dependéncias do sistema, além
de uma adequacao no cddigo para garantir a continuidade do sistema, corrigindo possiveis
vulnerabilidades e assegurando que possa continuar a evoluir (LUZ, 2024).

As areas implementadas atualmente sdo as seguintes:



15

« Area publica: Pode ser acessada por qualquer pessoa, essa area conta com informa-
¢Oes gerais sobre 0 TCC e as atividades de TCC do periodo corrente.

« Area do membro externo: Disponivel para instituicdes externas e convidados, essa
area conta com acesso as bancas e documentos, relacionados aos trabalhos aos quais
o membro externo faz parte.

« Area académica: Tendo acesso as informagdes sobre bancas e acesso aos documen-
tos e atividades dos discentes.

« Area do orientador: Area onde o docente pode monitorar e registrar todas as ativida-
des relacionadas aos trabalhos que o mesmo orienta, além de informacbes sobre as
bancas que ira participar.

« Area do Professor de TCC 1: O professor responsavel pela disciplina de TCC 1, nesta
area, verificar os prazos das entregas, agendar bancas de proposta e projeto, acompa-
nhar as entregas feitas e ter acessos as informagdes de todos os alunos matriculados
na disciplina.

« Area do Professor responsavel pelo TCC: Responsavel por gerenciar todos os proces-
sos relacionados as disciplinas de TCC 1 e TCC 2, podendo fazer cadastro de todos os
outros tipos de usudrios, definindo calendérios, cadastrando atividades e agendando
bancas de todos os tipos.

Estando em constante evolucao desde seu inicio, 0 SGTCC recebeu diversas mudancas
para tentar cumprir melhor seu objetivo: gerenciar os trabalhos de TCC. Uma parte dessa evolu-
¢ao foi a implementacao de novas funcionalidades, buscando atender melhor as necessidades
dos usudrios. Dentre os problemas ainda existentes no SGTCC, uma lacuna muito aparente
para os usuarios é a falta de avisos e lembretes sobre os prazos e sobre afazeres necessarios
para o processo de TCC.

Deste ponto de vista e pela tamanha importancia do cumprimento de prazos no pro-
cesso de TCC, surge a necessidade de informar todos os envolvidos quanto aos prazos, avisos
importantes, bem como o tempo restante para a conclusao do TCC. Com o objetivo de suprir
essa necessidade e minimizar os prejuizos causados pela perda de prazos e pela auséncia de
assinatura de documentos, faz-se necessario o planejamento, a escolha e a implementagao de
estratégias de notificacao.

3.2 Levantamento dos requisitos

O levantamento de requisitos foi conduzido a partir de duas abordagens complemen-
tares. Primeiramente, realizou-se a andlise dos fluxos operacionais ja existentes no sistema



16

SGTCC, com o objetivo de mapear as etapas do processo, identificar pontos criticos e compre-
ender a sequéncia de a¢des atualmente exigidas de discentes, docentes e responsaveis pelas
bancas. Os resultados provenientes da andlise do fluxo interno do TCC foram organizados na
Tabela 1, servindo como base para a definicdo das funcionalidades e melhorias propostas.

Tabela 1 — Levantamento de requisitos a partir da analise de fluxos do SGTCC.
Requisito Descricao
Cadastro e alteracao de
calendario

Notificar todos os usuarios cadastrados no calendario atual apés um
periodo determinado da criagdo ou alteragdo do mesmo.

Assinatura de

Enviar aviso imediato a todos que deveriam assinar um documento
documentos pendentes

especifico e ainda ndo realizaram a assinatura.

Confirmacéao de
assinatura de Notificar imediatamente os demais envolvidos quando um dos
documentos participantes realizar uma assinatura.

Prazos de envio de pro-
posta/projeto/monografia

Enviar lembretes sobre prazos de envio para orientadores e alunos, com
possibilidade de definir quantidade e intervalo dos avisos, diferenciando
perfis de usudrios.

Envio de proposta/proje-

. Avisar imediatamente orientadores, professores responsaveis e demais
to/monografia

envolvidos sobre o envio desses documentos.

Agendamento e alteragdo

. Enviar notificacdo aos avaliadores ap6s um tempo definido da ultima
de banca (avaliadores)

alteragéo no agendamento, solicitando confirmagéo de disponibilidade.

Agendamento e alteragdo

Notificar o aluno que ira defender e todos do curso apéds confirmagao
de banca (aluno e curso)

dos avaliadores, considerando a ultima alteragao.

Registros dos

Avisar imediatamente o académico quando houver registros de
apontamentos da banca

apontamentos pela banca.

Avisos sobre a evolugao

do tempo do TCC Notificar o aluno ao longo do desenvolvimento do TCC, seguindo uma

linha do tempo pré-definida.
Ciéncia na reuniao Notificar o académico para ciéncia dos registros feitos pelo orientador
em reunido, solicitando concordancia.

Apoés a identificagdo de requisitos a partir da analise de fluxos do SGTCC, aplicou-se
um formulario eletrénico elaborado no Google Forms ', intitulado “Prioridade e Preferéncia de
Notificagcoes — Sistema SGTCC”. O instrumento utilizado para a coleta de informagdes foi direci-
onado aos estudantes e professores da UTFPR — Campus Guarapuava envolvidos no processo
de TCC, a fim de compreender quais eventos do sistema demandam notificagbes, qual a priori-
dade de cada um deles e por quais meios de comunicagao os usuarios preferem ser informados.
Essas informacdes sao essenciais para o desenvolvimento de um sistema de notificacdes efi-
caz, personalizado e alinhado as necessidades reais dos seus diferentes tipos de usuarios.

A seguir, apresentam-se de forma resumida as principais questoes e suas respectivas
finalidades:

' Disponivel em https:/forms.gle/5eHwmktweuRHNt1i8


https://forms.gle/5eHwmktweuRHNt1i8

17

« Identificacao do papel do usuario: busca determinar se quem esta respondendo
€ académico, professor ou outro perfil. Essa informacao € essencial para compreen-
der as diferencas de necessidades entre 0s grupos e personalizar as notificacées de
acordo com cada funcao.

* Perfis utilizados no sistema: permite identificar quais papéis o usuario desempenha
(avaliador, orientador, coordenador etc.), contribuindo para entender a sobreposicao
de fungdes e os diferentes contextos de uso do sistema.

« Classificacao de eventos pelo método MoSCoW: solicita que os participantes clas-
sifiquem os eventos conforme sua prioridade (Must, Should, Could, Won’t Have). Essa
classificacdo auxilia na priorizacdo dos requisitos e na definicdo do que deve ser im-
plementado inicialmente.

 Preferéncia de meios de notificacao: tem como objetivo levantar os canais preferi-
dos de comunicacao (e-mail, WhatsApp, Discord, notificagdes internas, entre outros),
orientando o desenvolvimento de integracdes e funcionalidades adequadas as expec-
tativas dos usuarios.

» Sugestoes de novas notificacoes: oferece espago para que os participantes pro-
ponham notificagdes adicionais, classificando-as segundo o método MoSCoW. Essa
questao contribui para a descoberta de novos requisitos funcionais.

« Comentarios gerais e sugestoes: permite coletar feedbacks qualitativos sobre o sis-
tema e suas funcionalidades, fornecendo subsidios para melhorias na interface, na
frequéncia de notificagcdes e na experiéncia do usudrio.

3.3 Analise de Requisitos

Os resultados obtidos por meio do formulario indicaram uma maior participagao dos
docentes no processo de levantamento e priorizagdo dos requisitos do sistema, correspondendo
a 85% das respostas (12 participantes). Esse dado sugere um elevado nivel de interesse e
envolvimento por parte dos professores, possivelmente em razdo de sua atuacao direta nas
etapas de orientagdo, avaliacdo e validagao dos trabalhos de conclusdo de curso, nas quais as
notificacdes exerciam papel fundamental para o acompanhamento das atividades.

Em contrapartida, observou-se um baixo engajamento dos discentes, com apenas 2
respostas, representando 15% do total. Essa diferenga pode ter indicado uma menor percepgao
da importancia do sistema de notificacdes por parte dos estudantes, ou ainda dificuldades de
acesso e familiaridade com o processo de levantamento de requisitos.

Com base nos resultados do formulario, observou-se que o e-mail foi apontado como o
meio de comunicacgao preferencial para o recebimento de notifica¢des, por ser considerado um



18

canal oficial, confidvel e mais adequado para comunica¢des formais. Além disso, identificou-se
interesse na implementacédo de notificagdes internas no proprio sistema, bem como no uso do
WhatsApp como meio secundario de aviso, conforme ilustrado na Figura 2. Também se verifi-
caram diferencas nas preferéncias entre discentes e docentes, tanto em relagéo a frequéncia
quanto aos tipos de notificagbes desejados, refletindo as distintas necessidades e rotinas de
cada grupo de usuarios.

E-mail 11 (78,6%)

Discord 7 (50%)

WhatsApp

2 (14,3%)

Notificagéo no Sistema 5 (35.7%)

0,0 25 50 75 10,0 125

Figura 2 — Preferéncia de canal de notificagdo dos usuarios.
Fonte: Autoria propria..

Outro ponto abordado no formulario, além do levantamento de requisitos, foi a classifi-
cacgao dos requisitos com base no Método MoSCoW, onde cada usuéario classificou todos os
requisitos por importancia do seu ponto de vista, reunindo essas respostas na Tabela 2 que
apresenta os requisitos classificados segundo a metodologia MoSCoW, a qual define as priori-
dades de implementagdo em um sistema de notificagdes para o processo de TCC. Observa-se
que a maioria dos requisitos que sao classificadas como Must representam, do ponto de vista
dos usuarios, aspectos essenciais para o funcionamento do sistema. Esses requisitos repre-
sentam o nucleo (core) da aplicacao, voltado a automagao das comunicagdes e ao controle
de prazos e documentos — funcionalidades indispensaveis para garantir o andamento ade-
quado das etapas do TCC. Além disso, nota-se que 0s requisitos classificados como Should
e Could correspondem a funcionalidades complementares que, embora nao sejam essenciais
para o funcionamento inicial do sistema, agregam valor a experiéncia dos usuarios e a eficiéncia
do processo. Essas funcionalidades podem ser incorporadas em versdes futuras, ampliando o
escopo do sistema de notificagdes para contemplar aspectos como acompanhamento do pro-
gresso do TCC e maior transparéncia na comunicacao entre os participantes. Por fim, o Unico
requisito classificado como Won't refere-se a uma funcionalidade considerada de baixa priori-
dade no momento, podendo ser reavaliada conforme a evolugéo das necessidades institucionais
e a maturidade do sistema.



Requisito

Cadastro e alteracao de
calendario

Assinatura de
documentos pendentes

Prazos de envio de pro-
posta/projeto/monografia

Envio de proposta/proje-
to/monografia
Agendamento e alteracdo
de banca (avaliadores)

Agendamento e alteragao
de banca (aluno e curso)

Registros dos
apontamentos da banca

Avisos sobre a evolugao
do tempo do TCC
Ciéncia na reunido

Termo de Desisténcia de
Orientagao de TCC pelo
Professor Orientador

Termo de Substituicao de
Orientagao de TCC

Termo de Solicitacao de
Extensdo do Prazo de
TCC

Confirmacao de
assinatura de documentos

. Classificacao
Descricao detalhada MoSCoW
Todos cadastrados no calendario atual devem
ser notificados ap6s um tempo da criacao ou
alteragcao do calendario.

Enviar aviso imediato a todos que deveriam
assinar determinado documento e ainda nao
assinaram.

Notificar orientadores e alunos sobre os prazos
de envio. Definir nUmero de lembretes e
intervalos, diferenciando os tipos de usuarios.
Avisar orientador, professor de TCC 1 (quando
for proposta ou projeto) e professor responsavel.
Notificar membros avaliadores apés algum tempo
da ultima alteragdo no agendamento, pedindo
confirmagao de disponibilidade para a data
marcada.

Notificar o aluno e todos do curso apés
confirmagao dos avaliadores, considerando a
ultima alteragéo.

Enviar notificagcdo imediata ao académico
quando houver registro de apontamentos pela
banca.

Notificar o aluno ao longo da linha do tempo do
TCC, de acordo com intervalos definidos.
Notificagdo enviada ao académico para ciéncia
dos registros feitos pelo orientador, indicando
concordancia com as informacgoes registradas na
reuniao.

Notificacao enviada ao Coordenador do TCC
quando um professor orientador iniciar um
processo de desisténcia de orientacao, para que
o coordenador possa analisar e deferir ou ndo o
requerimento.

Notificacao enviada ao Coordenador do TCC
quando o orientador e o aluno orientado tiverem
assinado o Termo para a Substituicao de
Orientacao do TCC, para que o coordenador
possa analisar e deferir ou ndo o requerimento.
Notificar o Coordenador do TCC quando tanto o
orientador como o aluno orientado assinarem o
termo para extensao de prazo do TCC, para que
o coordenador possa analisar e deferir ou ndo o
requerimento.

Notificar imediatamente os demais envolvidos
quando alguém realizar uma assinatura.

Should

Should

Won'’t

Tabela 2 — Requisitos de notificacao do sistema com cores de classificacao MoSCoW.

Fonte: Autoria prépria.



3.3.1

20

Historias de usuario

As histérias de usuario a seguir foram elaboradas com base nos requisitos de notificacao

identificados no levantamento. Elas descrevem as necessidades do ponto de vista dos diferentes

tipos de usuarios do SGTCC (discentes, docentes e coordenadores).

Como usuario (discente, docente ou coordenador), quero ser notificado quando houver
uma nova insercao ou modificagdo no calendario académico do TCC para acompanhar

alteragdes importantes nos prazos € me organizar de forma adequada.

Como usuario que precisa assinar documentos no sistema, quero receber uma notifica-
¢ao imediata via e-mail para ser lembrado da pendéncia e evitar atrasos na tramitagao

dos documentos.

Como aluno ou orientador, quero receber lembretes sobre os prazos de envio da pro-
posta, projeto ou monografia para garantir o cumprimento dos prazos definidos pela co-

ordenacao.

Como orientador ou docente responsavel, quero ser notificado quando um aluno subme-
ter sua proposta, projeto ou monografia para acompanhar a evolugdo dos entregaveis e

validar o envio dentro do prazo.

Como membro avaliador de uma banca, quero ser notificado apés alteragdes no agen-

damento para confirmar minha disponibilidade e evitar conflitos de agenda.

Como discente, quero ser notificado apds a confirmacao da banca pelos avaliadores

para me preparar com antecedéncia.



Como aluno avaliado, quero ser notificado quando os avaliadores registrarem aponta-

mentos para ter ciéncia imediata das observagoes e iniciar os ajustes necessarios.

Como aluno em processo de TCC, quero receber notificacoes periddicas sobre a evo-
lucdo do tempo do meu TCC para manter o acompanhamento do cronograma e evitar

atrasos.

Como discente participante de reunides com o orientador, quero ser notificado para con-
firmar ciéncia dos registros feitos pelo orientador para validar as informacoes discutidas

e manter um histérico formalizado das reunides.

Como coordenado do TCC, quero ser notificado um professor orientador tenha assinado
o Termo de Desisténcia de Orientacdo para poder analisar e deferir ou ndo o requeri-

mento e entdo tomar as acdes necessarias.

Como coordenado do TCC, quero ser notificado tanto o professor orientador quanto o
aluno orientado tenham assinado o Termo de Substituicdo de Orientacdo para poder

analisar e deferir ou ndo o requerimento e entdo tomar as acdes necessarias.

Como coordenado do TCC, quero ser notificado tanto o professor orientador quanto o
aluno orientado tenham assinado o Termo de Extensdo de Prazo de TCC para poder

analisar e deferir ou ndo o requerimento e entdo tomar as agdes necessarias.

Como participante envolvido em um processo de assinatura, quero ser notificado quando
outro membro realizar uma assinatura para acompanhar o progresso do fluxo de docu-

mentos em tempo real.

21



22

Grad. Maya Fontink Banca Confirmada

Grad. Maya Fontinhas “no 7 —

Figura 3 — Botao de confirmacao de bancas para o professor responsavel na pagina de bancas de
defesa.

Fonte: Autoria propria..

3.3.2 Protétipos de Telas

Os prototipos das telas foram iniciados, com as adaptacdes necessarias nas interfaces
ja existentes no TCC, para que o sistema possa suportar novas interacoes.

A Figura 3 apresenta a interface destinada ao responsavel pelas bancas, cujo objetivo
principal é a gestao e confirmagao das defesas de TCC. Nessa tela, sdo exibidas informagbes
essenciais de cada banca, como discente, orientador, local, data e horario, além de um indica-
dor visual de status temporal da defesa. O elemento central desta funcionalidade é o botao de
confirmagao, que permite ao responsavel validar oficialmente a realizagdo da banca, alterando
o estado do registro para "Confirmada". Esse processo garante maior controle institucional,
prevenindo inconsisténcias no agendamento e assegurando que apenas bancas devidamente
homologadas avancem no fluxo do sistema, como no envio de notificacdes e habilitacdo das
etapas subsequentes. Dessa forma, a funcionalidade contribui para a padronizacdo e confiabi-
lidade do gerenciamento das bancas de TCC.

Outra tela a ser desenhada foi uma interface onde o responsavel pelo TCC pode geren-
ciar as regras de cada evento notificavel, podendo ser acessada pelo menu lateral utilizando a
opcao configuracdes de notificagdes, conectado como um usuario com permissao de professor
responsavel. A Figura 4 apresenta um recorte dessa interface que apresenta o contexto onde
o professor responsavel pode escolher quais notificacoes estao habilitadas. Ja a Figura 5 apre-
senta o restante da mesma tela, onde é possivel modificar a frequéncia, o intervalo entre envios,
o tempo de espera entre o acontecimento do evento no sistema e o envio, além de poder ativar
ou desativar notificagdes de algum evento. Essas configuracées permitem que o responsavel
mantenha as notificacdes Uteis e ndo invasivas, mantendo a funcionalidade (til para todos os
usuarios do SGTCC.



Configuragoes de Notificacdes

! SELECIONAR NOTIFICAQ()ESATIVAS

Cadastro e alteragdo de calendario

Assinatura de documentos pendentes

Assinatura de Ata de Defesa

Prazos de envio de proposta/projeto/monografia para aluno

Prazos de envio de proposta/projeto/monografia para orientador

Envio de proposta/projeto/monografia

Atualizagdo de Envio de proposta/projeto/monografia

Agendamento e alteragdo de banca (avaliadores)

Agendamento e alteragdo de banca (aluno e curso)

Hoje tem banca

Registros dos apontamentos da banca

Avisos sobre a evolugdo do tempo do TCC

Ciéncia na reunido

Termo de Desisténcia de Orientagdo de TCC pelo Professor Orientador

Termo de Substitui¢do de Orientagdo de TCC

Termo de Solicitagdo de Extensado do Prazo de TCC

O00O0O0O0OO0OO0oOocooood

Confirmagdo de assinatura de documentos

Figura 4 — Tela de configuracao de notificacoes ativas pelo professor responsavel.
Fonte: Autoria propria.

‘ CONFIGURAR FREQUENCIA E INTERVALO DE NOTIFICAQ()ES

Assinatura de documentos pendentes: Acada [24] horasaté [30] dias.

Assinatura de Atas de Defesa: Acada horas até a data limite, apés data limite diariamente por dias.

Prazos de envio de proposta/projeto/monografia: antes do prazo e na data de envio.

Agendamento e alteraco de banca (avaliadores): Até |2 ] reenvios com intervalo de horas entre eles.

Agendamento e alteragdo de banca (aluno): Diariamente, durante até a data da banca.

Avisos sobre a evolugio do tempo do TCC: Acada

Ciéncia na reunido: Acada |2 | dias até dar ciéncia.

Figura 5 — Tela de configuracao de regras de notificacao pelo professor responsavel.
Fonte: Autoria propria.



24

4 ESTRATEGIAS DE NOTIFICACAO DO SGTCC

A implementacao foi organizada a partir do planejamento inicial, que contemplou a for-
mulacdo dos modelos de notificacao, a definicio dos modelos de e-mail e a definicao do fluxo
de notificagbes.

O objetivo deste capitulo é apresentar de forma clara o processo de constru¢ao da solu-
cao, evidenciando as decisdes técnicas, 0s recursos empregados e a maneira como as notifica-
¢cOes foram estruturadas no sistema. A seguir, a se¢ao de definicdo detalha os elementos que
serviram de base para a implementacgéo.

4.1 Definicao

A partir do levantamento de requisitos apresentado na secao 3.2, foi possivel estruturar
um conjunto de notificagbes alinhado as demandas reais dos usuarios e as particularidades do
fluxo de trabalho do SGTCC. Essa etapa de definicdo teve como foco transformar os requisitos
funcionais em regras praticas e automatizaveis, descrevendo para cada evento: o gatilho (trig-
ger), os destinatarios, o momento do envio e a estratégia de reenvio ou cancelamento. Cada
notificacao foi formalizada em um formato padronizado, conforme o modelo descrito a seguir:

Evento: identifica a agdo que dispara a notificacao (ex: criacado, atualizagéo ou confirma-
¢cao de dados);

Alvo: define os usuarios que receberao a mensagem, podendo incluir académicos, ori-
entadores, avaliadores, coordenadores ou membros externos a instituicao;

Momento do envio: determina o intervalo entre o0 evento e o envio da notificagédo, permi-
tindo ajustes para evitar redundéncias;

Reenvio: indica se ha necessidade de lembrete ou tentativa posterior;

Observacoes: campo destinado a excegdes ou regras adicionais de comportamento.

A adogéao desse formato padronizado permitiu que as notificagbes fossem registradas de
maneira uniforme e facilmente mantidas por meio de arquivos de configuracéo. Durante a etapa
de definicao, também foram especificados os modelos de e-mail associados a cada notificacao,
os gatilhos do sistema (hooks) que disparam os eventos e o fluxo légico de envio, detalhados
nas subsecobes seguintes.

Essas definicbes asseguraram que a implementacao seguisse um modelo previsivel,
reduzindo inconsisténcias e facilitando futuras expansées — como a integrag@o de novos canais

de comunicagao (ex: notificagdes internas, WhatsApp ou SMS).



25

4.1.1 Modelos de notificacao

As regras de notificagdo definem o comportamento operacional do sistema, descrevendo
quando, para quem e como cada mensagem deve ser enviada. Elas foram formuladas com base
na andlise dos fluxos de trabalho do SGTCC e nas respostas do questionario aplicado aos usua-
rios, apresentados na secdo 3.2. A seguir, sdo apresentadas todas as regras implementadas,
acompanhadas de uma breve explicacdo sobre a motivacdo e o comportamento de cada uma.

Evento: Criacdo ou atualizacdo do calendario académico;
Alvo: Todos os usuarios cadastrados no calendario atual;
Momento do envio: 1h apés a ultima alteracao;
Reenvio: Nao é necessario;

Observacoes: Professor responsavel pode desativar; evitar notificagbes desnecessarias.

Essa notificacdo é essencial para garantir que alunos e docentes estejam sempre cien-
tes de mudangas nos prazos e eventos do calendario académico. O envio é programado com
um pequeno atraso para evitar disparos multiplos durante edicées consecutivas do calendario.

Evento: Documento ndo assinado a mais de 24h;

Alvo: Quem estiver com assinatura pendente no documento;
Momento do envio: Apos 24h da criagdo do documento;
Reenvio: A cada 24h até a assinatura ser realiza ou até 30x;

Observacoes: Documentos que geram essa notificacao (TCO. TEP, TCAI, TSO).

Essa notificagdo tem como objetivo acelerar o processo de validagdo documental, evi-
tando atrasos na tramitagcao dos termos obrigatérios. O reenvio diério foi projetado para reforgar
a necessidade da assinatura até que o fluxo esteja completo.

Evento: Documento ndo assinado apés 2:30 h comeca notificar;

Alvo: Quem estiver com assinatura pendente no documento;

Momento do envio: Apds duas horas da defesa;

Reenvio: A cada duas horas até assinar ou até a data limite para assinatura. Depois a
cada dia até 30x;

Observacgoes: Sem observagoes.



26

A Ata de Defesa é um documento sensivel e com prazos rigidos. Por isso, a notificacdo
€ configurada para ter uma frequéncia de envio mais alta nas primeiras horas apds a banca,
reduzindo o risco de atrasos e garantindo o registro formal imediato do resultado.

Evento: Proximidade de prazos de entrega;

Alvo: Discentes que ndo realizaram o envio;

Momento do envio: 7, 3 e 1 dia antes do prazo. No dia também;
Reenvio: Reenvio por prazo pré definido;

Observacgoes: Sem observagoes.

Essa notificagdo atua como lembrete preventivo para os alunos, reforcando o cumpri-
mento dos prazos de entrega de cada atividade. O envio escalonado (7, 3 e 1 dia antes) foi
definido com base em boas praticas de gestdao de prazos em ambientes académicos.

Evento: Proximidade de prazos de entrega;

Alvo: Docentes com orientagcdes no semestre corrente;

Momento do envio: 7, 3 e 1 dia antes do prazo. No dia também;

Reenvio: Reenvio por prazo pré definido;

Observacgoes: Cuidar caso o orientador tenha mais de um orientado no mesmo semes-

tre.

Similar a notificacdo anterior, essa regra visa manter o orientador ciente do progresso de
seus orientandos, permitindo o0 acompanhamento proativo. A diferenciagéo por perfil de usuario
evita redundancias e melhora a clareza das mensagens.

Evento: Submissao do envio feita no sistema;

Alvo: Orientador do discente que realizou o envio, Professor Responsavel do TCC e
Professor de TCC1 (quando entrega de TCC1);

Momento do envio: Imediato;

Reenvio: Nio é necessario;

Observacoes: Sem observagoes.



27

Trata-se de uma notificacao disparada automaticamente logo apés o envio de um docu-
mento. Sua fungao € manter os professores informados sobre novas submissdes, agilizando o

processo de avaliacédo e validagao.

Evento: Submisséo do envio feita no sistema,;

Alvo: Orientador do discente que realizou o envio, Professor Responsavel do TCC e
Professor de TCC1 (quando entrega de TCC1);

Momento do envio: Imediato;

Reenvio: Nao é necessario;

Observacgoes: Sem observagoes.

Complementar a regra anterior, essa notificagao informa sobre alteragdes em documen-
tos ja enviados. Ela garante rastreabilidade e comunicacao transparente entre aluno e equipe
docente, evitando confusdes com versdes antigas.

Evento: Criacdo ou alteracao de agendamento de banca;

Alvo: Docentes e membros externos listados como avaliadores na banca;

Momento do envio: 1h apés a criagao ou alteragao da banca;

Reenvio: Até 2 reenvios, intervalo de 48h;

Observacoes: Cuidar para ndo criar novos eventos quando houver alteragéo antes do

envio.

Essa notificacdo € fundamental para o gerenciamento de bancas avaliadoras, garan-
tindo que todos os participantes recebam confirmagéo formal do agendamento, garantindo que
ndo haja uma banca em que um avaliador ndo tenha ciéncia desse compromisso. O atraso
intencional de uma hora evita duplicidades caso o professor realize ajustes sucessivos.

Evento: Apos confirmacao dos avaliadores;

Alvo: Aluno defensor da banca e docentes e membros externos listados como avaliado-
res na banca;

Momento do envio: Imediato;

Reenvio: 24h antes da banca;

Observacgoes: Confirmacao das bancas pelo Professor responsavel.



28

Essa regra fecha o ciclo de comunicag¢ao da banca, garantindo que todos os envolvidos
estejam cientes da confirmagéo final. O reenvio programado 24 horas antes funciona como
lembrete de compromisso e reforga a organizacéo do evento.

Evento: Apds a defesa se houver inclusdo de apontamentos pela banca;
Alvo: Aluno defensor da banca;

Momento do envio: Imediato;

Reenvio: Nao é necessario;

Observacoes: Sem observacgodes.

Essa notificagao foi projetada para promover transparéncia no processo avaliativo, infor-
mando ao aluno que os apontamentos realizados pela banca ja estdo disponiveis no sistema

para consulta.

Evento: Registro de reuniéo pelo orientador;
Alvo: Aluno orientado;

Momento do envio: Imediato;

Reenvio: A cada dois dias até dar a ciéncia.;

Observacgoes: Sem observagoes.

Tem funcéo de assegurar que o aluno confirme o recebimento e leitura das anotagdes de
reunides. O reenvio periddico serve como lembrete até que a ciéncia seja registrada no sistema.

Evento: Submissao de termo no sistema;
Alvo: Professor responsavel;

Momento do envio: Imediato;

Reenvio: Nao é necessario.;

Observacoes: Termos que geram essa notificagcdo (TDO, TSO, TEP).

Essa notificagao reforga a rastreabilidade documental no sistema, garantindo que o pro-
fessor responsavel seja imediatamente informado sobre novas submissées de termos instituci-
onais que demandam a andlise e validagao formal.



4.1.2 Templates de E-mail

Os modelos de e-mail foram elaborados para padronizar a comunicagao do sistema com
0s usuarios, garantindo clareza e consisténcia das informacdes enviadas. A estrutura basica dos
e-mails segue o padrao:

Assunto: identifica de forma direta o tipo de notificagéo;

Saudacao: personalizada com o nome do destinatario;

Corpo da mensagem: contém o conteudo especifico da notificagao;
Rodapé: Atenciosamente,

Sistema de Gerenciamento de TCC (SGTCC)

Universidade Tecnoldgica Federal do Parana - Campus Guarapuava.

A seguir, sdo apresentados os modelos para cada tipo de notificacao.

Cadastro e alteracao de calendario
Assunto: [SGTCC] Atualizagdo no calendario académico de TCC1/2 ANO/PERIODO
Corpo da mensagem:

Um novo calendario académico foi cadastrado/alterado em <DATA>.

Por favor, consulte o sistema para verificar os prazos atualizados.

Assinatura de documentos pendentes

-
| \

Assunto: [SGTCC] Assinatura pendente no documento

Corpo da mensagem:
O documento <NOME_DO_DOCUMENTO>, criado em <DATA>, ainda néo foi assinado.

Sua assinatura é necessaria para dar continuidade ao processo.

Assinatura pendente de Ata de Defesa

Assunto: [SGTCC] Assinatura pendente da Ata de Defesa

Corpo da mensagem:
A Ata de Defesa referente ao TCC <TITULO_DO_TCC> precisa ser assinada com urgén-
cia.

O prazo de assinatura é reduzido devido a relevancia do documento.




30

Prazos de envio(académico)

Assunto: [SGTCC] Lembrete de prazo para envio de <TITULO_DA_ATIVIDADE>

Corpo da mensagem:
O prazo final para envio de <TITULO_DA_ATIVIDADE> é <DATA>.

Faltam <X> dias para o encerramento. Nao deixe para a ultima hora!

,
\

Prazos de envio(orientador)

Assunto: [SGTCC] Lembrete de prazo para envio de atividades de seus orientandos

Corpo da mensagem:
O prazo final para envio de <TITULO_DA_ATIVIDADE> de seus orientandos é <DATA>.

Acompanhe o progresso no sistema para evitar atrasos.

-
| \

Envio de atividade
Assunto: [SGTCC] Novo envio de <TITULO_DA_ATIVIDADE>

Corpo da mensagem:
O académico <NOME_DO_ACADEMICO> enviou sua <TIPO_DOCUMENTO> em
<DATA>.

O documento ja esta disponivel para avaliagao.

Atualizacao de envio de atividade

-
| \

Assunto: [SGTCC] Atualizacéo no envio de <TITULO_DA_ATIVIDADE>

Corpo da mensagem:
O académico <NOME_DO_ACADEMICO> atualizou seu envio de <TITULO_DA_-

ATTIVIDADE>. A nova versao esta disponivel no sistema.

\

\

Agendamento e alteracao de banca (avaliadores)

Assunto: [SGTCC] Agendamento de banca para avaliagao

Corpo da mensagem:

Vocé foi designado como avaliador na banca do aluno <NOME_DO_ACADEMICO>,com
TCC intitulado <TITULO_DO_TCC>. Data: <DATA_BANCA>

Horéario: <HORARIO>

Local: <LLOCAL>

Por favor, confirme sua disponibilidade.

\




31

Agendamento e alteracao de banca (aluno)

Assunto: [SGTCC] Agendamento de banca confirmado

Corpo da mensagem:
Sua banca de defesa foi agendada com os seguintes detalhes: Data: <DATA_BANCA>
Horéario: <HORARIO>

Local: <LOCAL>

Confira os detalhes no sistema.

\

Registros dos apontamentos da banca

Assunto: [SGTCC] Apontamentos da banca disponiveis

Corpo da mensagem:
Os apontamentos registrados pela banca do seu TCC ja estao disponiveis no sistema.

Acesse sua area para consulta-los.

\

\

Ciéncia na reuniao

Assunto: [SGTCC] Registro de reunido disponivel

Corpo da mensagem:

O orientador <NOME_ ORTENTADOR> registrou uma reunido no sistema.

Por favor, confirme a ciéncia das informacoes acessando sua area no SGTCC.

,
\

Submissao de Termos ao Professor Responavel

Assunto: [SGTCC] Registro de TITULO_DO_TERMO

Corpo da mensagem:
Foi registrado um <TITULO_DO_TERMO> relacionado ao TCC de <NOME_DO_ALUNO>,
intitulado <TITULO_DO_TCC>.

Consulte o sistema para verificar os detalhes.

\

4.1.3 Fluxo de Envio

Os diagramas de sequéncia apresentados nas Figuras 6 e 7 ilustram o fluxo de cria-
cao de uma notificacdo no SGTCC, detalhando as interagdes entre 0s componentes respon-
saveis pela construgdo, armazenamento e disparo da notificacdo. A Figura 6 descreve o pro-
cesso de criagdo e armazenamento da notificacdo que se inicia quando ocorre um evento in-
terno, como, por exemplo, a criacdo de uma banca de defesa. Esse evento é encaminhado



32

ao modulo de hook correspondente, que atua como um ponto de extensao responsavel por
reagir automaticamente as alteragdes relevantes no sistema. Ao receber o evento, o hook
aciona o componente CreateJob, que executa, de maneira assincrona, uma requisicao ao
SchedulerService, servigo responsavel por estruturar os dados da notificagao, aplicar re-
gras de negécio e determinar os metadados necessarios para a etapa posterior de envio. Apéds
essa etapa, o SchedulerService salva a notificagdo no banco de dados (SQLite), onde
permanece armazenada até o momento de processamento pelos servigos responsaveis pelo
envio.

A Figura 7 descreve o fluxo completo de envio das notificagcdes previamente criadas e ar-
mazenadas. Esse processo é assincrono e ocorre no container workers, separado da aplicagao
web, envolvendo componentes que operam de forma periddica por meio de jobs agendados.
O fluxo tem inicio quando o ActiveJob aciona periodicamente o SchedulerPollerJob,
que executa consultas no banco de dados a fim de localizar notificagdes pendentes e elegi-
veis para envio. Apds recuperar os registros, 0 SchedulerPollerJob envia essas infor-
macgdes a0 ProcessorService, o qual aplica a ldgica central do sistema de notificagdes,
incluindo validagdes de prazos, regras especificas do fluxo académico e também a verifica-
¢céo de condigbes que possam impedir o envio. Para isso, 0 ProcessorService consulta o
StopChecker, que determina se existem motivos para cancelar o envio de alguma notifica-
¢ao. Caso o envio seja permitido, 0 ProcessorService aciona o DispatchJob, respon-
savel por criar uma nova tarefa assincrona para realizar o envio propriamente dito. Esse job é
entdo encaminhado ao componente Dispatcher, que o direciona ao mensageiro correto a
partir do tipo da notificagcéo (por e-mail, no sistema, etc.). Em seguida, o Dispatcher chama
o0 NotificationMailer, componente encarregado de gerar e enviar o e-mail ao destina-
tario. Finalmente, o NotificationMailer envia a mensagem ao usuario, completando o
ciclo de notificacao. Esse fluxo demonstra como o sistema separa as etapas de criagao e envio,
permitindo que n&o haja sobrecarga de responsabilidades em poucos servicos.

SGTCC Hook Createdob Scheduler BD
Evento dispara Gera solicitagao Cria notificagao Salva no BD
Legenda:

Hook = Hooks: :ExaminationBoard
CreatedJob = Notifications: :CreateJob
Scheduler = Notifications: :SchedulerService
BD = Banco de Dados SQLite para notificacoes e jobs
Figura 6 — Diagrama de sequéncia — Processo de criacao de notificacao



33

ActiveJob Poller Processor StopCheck
Periodicamente chama Busca notificacoes Consulta condig¢des de parada

Enfileira|envio

Usuario Mailer Dispatcher DispatchJob

ri -mail Envia notificacao Inicia envio
Cria 0 e-ma ¢ Legenda:

Poller = SchedulerPollerJob
Processor =Notifications: :ProcessorService
StopChk = Notifications: :StopChecker
Dispatchdob = Notifications: :DispatchJob
Dispatcher =Notifications::Dispatcher

Mailer =NotificationMailer
Figura 7 — Diagrama de sequéncia — Processo de envio de notificagdes

4.2 Implementacao das funcionalidades

O processo de implementacao das funcionalidades iniciou-se ap6s a concluséo do pla-
nejamento arquitetural descrito na seg¢édo anterior, tendo como obijetivo principal integrar o sis-
tema de notificagées ao SGTCC de forma modular, assincrona e independente do fluxo princi-
pal da aplicacao. Para alcancar esse propésito, foi necessario adaptar a estrutura existente do
sistema, incorporando novos componentes responsaveis pela criagdo, agendamento, envio e
controle das notificagdes.

A implementacgéao foi conduzida de maneira incremental, partindo da configuragdo do
ambiente de desenvolvimento e do mecanismo de filas, seguida pela modelagem das classes
de notificagao, pela definicdo dos servigos responsaveis pelo processamento assincrono € pela
integracao com os eventos internos da aplicacdo. Cada etapa foi validada por meio de testes
automatizados, garantindo a confiabilidade e a consisténcia do sistema diante de diferentes
cenarios operacionais.

Nos tdpicos a seguir, sdo detalhadas as etapas do processo de implementacao, desde
a configuragdo do ambiente e das filas de execugao até a arquitetura de servigos, a integracao
com os eventos do sistema e a estratégia de testes utilizada para assegurar o correto funciona-
mento das funcionalidades desenvolvidas.



0o N o o B~ W PN

34

4.2.1 Configuragdo do ambiente de desenvolvimento

Apesar do SGTCC ja ser uma aplicacao em pleno funcionamento, foram necessarias
alteracdes estruturais no ambiente de desenvolvimento para integrar o sistema de notificagdes
de forma assincrona, utilizando o framework Active Job' do Ruby on Rails em conjunto
com o adaptador Solid Queue. Essas modificagdes visaram garantir isolamento, paralelismo
e tolerancia a falhas durante o processamento das notificagcdes. As modificacées envolveram
ajustes na configuragédo do Docker, na definicao de dependéncias Ruby via Gemfile, e na criagao
de arquivos auxiliares para orquestrar o enfileiramento de tarefas assincronas.

No Docker, o servigo da aplicacdo foi configurado para incluir o processo de enfileira-
mento do Solid Queue em execuc¢do paralela ao servidor web, garantindo que os jobs pudessem
ser processados em segundo plano. O arquivo docker—compose.yml passou a incluir um
servico adicional responsavel pelo processamento das filas, conforme o exemplo simplificado a

seguir:

Listing 4.1 — Trecho adicionado ao arquivo docker-compose.yml com servico de filas Solid Queue.
workers :
<<: =app

command: >

bash -c

bundle exec bin/jobs

environment :

RAILS_ENV: development
Essa separacdo permite que o servico workers seja reiniciado ou escalado independente-
mente do servidor web, pratica comum em arquiteturas que utilizam filas distribuidas. O servigo
workers é responsavel por executar o comando bin/ jobs, que inicializa o processo de mo-
nitoramento e execugdo das filas configuradas pelo Solid Queue. Esse comando é mantido em
execugao continua dentro do contéiner, funcionando de forma independente do servidor web,
mas conectado ao mesmo banco de filas.

No arquivo Gemfile, foram adicionadas dependéncias especificas para suportar o pro-
cessamento assincrono (gem solid_queue) e a integracdo com o SQLite(gem sqlite3). O motivo
da escolha da gem solid_queue esta detalhado em subsecéo 4.2.3. Essa decisao simplifi-
cou a infraestrutura, permitindo que todo o processamento ocorresse no préprio banco SQLite
configurado para a fila.

' Disponivel em hitps:/guides.rubyonrails.org/active_job_basics.html. Acessado em 05 de novembro de

2025.


https://guides.rubyonrails.org/active_job_basics.html

g

© 00 N o o0~ wWwN

35

Para definir a estrutura e o comportamento das filas, foi criado o arquivo config/-
queue.yml, no qual sdo especificadas as filas disponiveis, suas prioridades e a quantidade
de workers alocados para cada tipo de tarefa:

Listing 4.2 — Configuracdo dos dispatchers (Despachantes) e workers (Trabalhadores) no ar-
quivo config/queue.yml.

default: &default
dispatchers:
- polling_interval: 1
batch_size: 500

workers :

— queues: "=
threads: 3
processes: 1

polling_interval: 0.1

Nesta configuracdo, o Solid Queue utiliza um Unico dispatcher com intervalo de var-
redura de um segundo e tamanho maximo de lote (batch size) de 500 tarefas por ciclo.
Esse componente é responsavel por identificar novas tarefas enfileiradas no banco de dados
e distribui-las para os workers. Os workers sao configurados para processar todas as filas
(queues: "«") com trés threads de execuc¢ao concorrentes por processo, garantindo pa-
ralelismo e eficiéncia no tratamento de notificagdes, e-mails e demais tarefas assincronas. O
parametro polling _interval: 0.1 assegura uma checagem continua da fila, com la-
téncia minima entre a criagdo de uma tarefa e sua execucgao efetiva. A configuragéo contida no
arquivo config/queue.yml permite que o Solid Queue funcione sem dependéncias exter-
nas, dispensando a utilizacdo de sistemas adicionais como Redis ou Sidekiq. Todo o controle
das filas ocorre dentro da propria aplicacao Rails, utilizando o banco de dados para persisténcia
e controle de concorréncia.

O SGTCC utiliza o banco de dados PostgreSQL para armazenar as informagdes da
aplicacdo. Contudo, para a implementagao do sistema de notificagcdes, optou-se por uma ar-
quitetura de mdultiplos bancos de dados, adicionando um segundo repositorio exclusivo para o
gerenciamento das filas de execuc¢ao.

Conforme detalhado na subsecédo 4.2.3, 0 Solid Queue foi configurado para operar
sobre um banco de dados SQLite dedicado, isolado do banco principal da aplicagdo. Essa
decisao técnica foi fundamental para evitar situagdes de database locking e garantir que opera-
cOes intensivas em escrita — como a criacdo, atualizacao e remocao de tarefas assincronas —
néo interferissem no desempenho do PostgreSQL.

Além de reduzir a possibilidade de contencao de recursos, o uso de um banco secunda-
rio também simplifica a manutencao do sistema, permitindo que o médulo de notificacdes seja
escalado ou reiniciado independentemente do restante da aplicacao.



1

O © 00 N o o~ wMN

12
13
14
15
16
17
18
19
20
21
22
23

36

A configuracdo da coexisténcia entre os dois bancos foi definida no arquivo
config/database.yml, conforme o exemplo a seguir:

Listing 4.3 — Configuracao de multiplos bancos de dados no arquivo config/database.yml.
default: &default

adapter: postgresql

encoding: utf8

pool: 5

username: <%= ENV[’db.username’] %>

password: <%= ENV[’db.password’] %

host: <%= ENV[’db.host’] %>

migrations_paths: db/migrate

development:
primary :
<<: ~default

database: postgres

queue:
adapter: sqlite3
database: storage/queue_development.sqlite3
migrations_paths: db/queue_migrate
pool: 5
timeout: 15000
properties:
journal_mode: WAL

# continuacdo da configuracdo do banco de dados em outros ambientes
No exemplo acima, o ambiente development define duas conexdes: a conexao
primary, responsavel pelos dados centrais da aplicacao, e a conexdo queue, utilizada ex-
clusivamente pelo Solid Queue. O modo WAL (Write-Ahead Logging) foi habilitado no SQLite
para melhorar o desempenho de gravacao concorrente, assegurando integridade e eficiéncia
no processamento de tarefas assincronas.



37

4.2.2 Estruturacao das classes de notificacdo

Para dar inicio ao desenvolvimento, foi projetada uma arquitetura flexivel e extensivel,
capaz de acomodar novos tipos de eventos, conteldos e regras de disparo, sem necessidade
de alteragbes estruturais no cédigo. Essa flexibilidade decorre da separagéo explicita entre trés
modelos principais — Notification, Notification Template e NotificationRule — cada um responsa-
vel por um aspecto independente da gestao de notificagdes. Essa divisao reduz o acoplamento
entre as partes e permite que novos comportamentos sejam adicionados apenas por meio de
configuragdes e registros no banco de dados, sem que seja necessario modificar as classes
existentes. Por exemplo, para introduzir um novo tipo de notificacdo no sistema, basta criar um
novo femplate e definir suas regras correspondentes, sem editar 0s servigos ou jobs ja existen-
tes. De forma semelhante, é possivel alterar textos, periodicidades, destinatarios ou condi¢coes
de envio apenas modificando dados persistidos, preservando o restante da arquitetura.

O modelo Notification é responsavel por registrar cada instancia de notificacdo gerada
no sistema. Ele armazena informagdes como o destinatario (recipient), o tipo da notificagdo
(notification_type), os dados especificos do evento (data) e o estado atual (status, scheduled_-
at, sent_at). Essa modelagem permite acompanhar o ciclo de vida completo de uma notificacao,
desde o0 agendamento até o envio e eventuais reenvios.

O modelo NotificationTemplate define a estrutura textual das notificagdes, contendo cam-
pos como key, subject e body, que servem de base para mensagens de e-mail e alertas exibidos
no sistema. Essa separacao entre dados e conteldo textual facilita a customizagao dos mode-
los de mensagem, permitindo que o administrador altere titulos e textos sem a necessidade de
alterar o codigo-fonte.

Ja o modelo NotificationRule define as regras de disparo, como o nimero de dias ou
horas de antecedéncia em relacdo ao evento, o nUmero maximo de tentativas de reenvio e o
intervalo entre elas. Essas regras sao associadas a um template e permitem configurar notifi-
cacoes flexiveis, adaptando-se a diferentes cenarios do sistema, como prazos de atividades ou
confirmagao de bancas.

4.2.3 Processamento assincrono com Active Job e Solid Queue

Durante o desenvolvimento do sistema de notificacdes, tornou-se necessario lidar com
operacOes assincronas — tarefas que ndao devem ser executadas no mesmo ciclo da requisi-
¢ao web, como o envio de e-mails, o agendamento de mensagens futuras e a execucao de
verificagdes recorrentes. Para atender a essa necessidade, optou-se pela utilizacdo do Active
Job, framework nativo do Ruby on Rails que fornece uma interface padronizada para a cria-
¢ao, enfileiramento e execugéo de tarefas em segundo plano. O Active Job abstrai a Iégica de
comunicacgao entre a aplicacdo e o mecanismo de fila, permitindo que o mesmo cédigo seja
compativel com diferentes adaptadores.



38

O desenvolvimento do processamento de tarefas assincronas iniciou-se com o adapta-
dor SideKiqg, uma biblioteca que gerencia as tarefas em segundo plano, porém foram encontra-
das algumas dificuldades ao utiliza-lo, a primeira foi um aumento das dependéncias do projeto,
pois 0 SideKiq necessita de um servidor para executar as tarefas e outro servidor para rodar
o Redis?, um armazenamento de estrutura de dados em memoéria, o qual é utilizado para ar-
mazenar 0s servicos em segundo plano, outro problema encontrado foi a utilizagédo do banco
de dados da aplicacao para armazenar as notificacées, o que pode acarretar em atrasos nas
requisicoes dos usuarios, pelo fato do banco estar sendo utilizado por uma tarefa assincrona
durante o processamento de uma notificagao.

Pensando em contornar esses problemas foi realizada a mudanca de adaptador de tare-
fas em segundo plano, a nova escolha foi o Solid Queue®, uma solucéo projetada para oferecer
um mecanismo de enfileiramento leve, eficiente e totalmente integrado a aplicagéo, sem ne-
cessidade de dependéncias externas, outro ponto que baseou essa mudanca foi que esse é o
adaptador padrao do Rails a partir da versao 8, além desses motivos o Solid Queue também
facilita trabalhar com outro banco de dados para as notificagbes e 0s processos assincronos, a
tecnologia de banco de dados escolhida para esse banco secundario foi o0 SQLite, por se tratar
de um banco de dados embutido, leve e por ndo precisar de um servidor.

4.2.4 Arquitetura de Servigos (Service Objects)

Para manter a logica de negécios organizada, testavel e aderente ao Principio da
Responsabilidade Unica (SRP), a arquitetura do sistema de notificacdes foi dividida em um
conjunto de Service Objects (Objetos de Servigo) e Jobs (Tarefas) especializados. Cada
classe tem um propdsito Unico, evitando que Models (como Notification) ou Jobs (como
DispatchJob) acumulem responsabilidades. A arquitetura de servicos € composta pelos se-
guintes componentes:

* Notifications: :CreateJdob (Job de Criacado): Este € um job do Active Job.
Sua Unica fungao é receber os dados brutos de um evento (tipo de notificagéao, destina-
tario, etc.) e chamar o SchedulerService. Esta classe é o ponto-chave da arqui-
tetura para resolver problemas de concorréncia: os Hooks (executados pelo processo
web do Puma) apenas enfileiram este job — uma operacao de escrita muito rapida na
tabela solid_queue_jobs —em vez de chamar 0 SchedulerService direta-
mente. Isso transfere a légica de criacdo da notificagdo (que envolve multiplas leituras
e escritas nas tabelas notifications enotification_templates) parao
processo worker do Solid Queue. Ao garantir que apenas o0 processo worker escreva

2
3

Disponivel em https://redis.io/. Acessado em 06 de novembro de 2025.
Disponivel em https://github.com/rails/solid_queue. Acessado em 06 de novembro de 2025.


https://redis.io/
https://github.com/rails/solid_queue

39

no banco de dados SQLite, o conflito de database is locked com o processo

web é eliminado.

Notifications: :SchedulerService (Servico de Agendamento): Respon-
savel por criar ou atualizar o registro da Notification no banco de dados.
Ele recebe os dados do CreateJob, consulta o NotificationTemplate e 0
NotificationRule associados para calcular o scheduled_at (horario de en-
vio). Ele define o status inicial como pending (para envio imediato) ou scheduled
(para envio futuro) e persiste o registro. Ele nao enfileira o envio.

Notifications: :SchedulerPollerJob (Job de Sondagem/Recorrente):
Este é um job recorrente (definido no recurring.yml do Solid Queue para rodar
a cada 15 minutos). Sua funcdo é consultar o banco de dados por notificacdes "en-
viaveis"(usando o escopo Notification.pending_to_send, que busca status
pendingou scheduledcom scheduled_at no passado). Para cada notificagdo
encontrada, ele invoca o ProcessorService.

Notifications: :ProcessorService (O "Cérebro"): Este é o servigo de 16-
gica mais complexo. Ele decide se uma notificagdo encontrada pelo Poller deve real-
mente ser enviada. Ele executa as seguintes verificacoes:

— Verifica se a notificacgao j& foi finalizada (enviada, falhada ou cancelada).

— ChamaoNotifications: :StopChecker para verificar se a condi¢cao
de parada foi atingida (ex: o documento j& foi assinado?).

— Verifica se 0 nimero de tentativas (at tempt s) excedeu omax_attempts.

- Se todas as verificagbes passarem, ele enfileira o]
Notifications::DispatchJob para o envio.

— Apos enfileirar, ele atualiza o status da notificacdo (incrementa attempts e
define como sent se for envio Unico, ou scheduled para o futuro se for

uma notificagéo insistente).

Notifications: :StopChecker (Servico de Verificacao): Um servigo alta-
mente especializado chamado pelo ProcessorService. Ele contém a ldgica de
negdcios para determinar se uma notificagcao "insistente"(como um lembrete de assi-
natura pendente) deve ser interrompida. Ele se conecta ao banco de dados principal
(PostgreSQL) para verificar o estado de outros modelos (ex: Signature.status

== true).

Notifications: :DispatchJdob (Job de Despacho): Um job simples, sua
Unica tarefa é receber um notification_id e chamar o Dispatcher. O uso
de um job aqui isola a tentativa de envio (que pode falhar devido a problemas de rede



40

ou API) da légica de processamento, permitindo que o Solid Queue use suas proprias
politicas de retentativa para falhas de infraestrutura.

* Notifications: :Dispatcher (Servico de Entrega): O componente final. Ele
|é o atributo channel do template da notificacdo (ex: ’email’) e invoca o método apro-

priado, como NotificationMailer.generic_email (...).

Esta arquitetura desacoplada garante que cada componente possa ser modificado e
testado de forma independente, além de resolver os desafios de concorréncia do banco de
dados SQLite.

4.2.5 Integragdo com Eventos do Sistema (Hooks)

A integragao do sistema de notificagdes com a légica de negécios principal da aplicagdo
é realizada através de Hooks (Ganchos) e callbacks do Active Record.
A l6gica é implementada da seguinte forma:

» Callbacks nos Modelos: Os modelos principais da aplicagdo (ex: Document,
AcademicActivity, ExaminationBoard) utilizam callbacks como after_ -
commit que sdo chamadas apéds a criacdo ou atualizacdo de um objeto daquele mo-
delo. O uso de after_commit é crucial, pois garante que a transagao do banco
de dados principal (PostgreSQL) foi concluida com sucesso antes de tentar criar uma
notificagdo (que escreve no banco SQLite).

* Modulos de Hooks: Os callbacks ndo contém légica de negécios. Em vez disso,
eles chamam um método de classe em um médulo de Hook dedicado, como

Notifications: :Hooks::Documents.document_ created(self).

» Traducao da Loégica: Dentro do médulo de Hook (ex:
Notifications: :Hooks::Documents), o método document_created
recebe o objeto do modelo (ex: um Document). A fungdo do hook & transformar
esse objeto de negdcios em parametros de notificagcdo: quem deve ser notificado
(recipient), qual o tipo de notificacdo (notification_type) e quais dados
(data) o e-mail precisara.

» Enfileiramento do Job: A acdo final do hook é chamar o
Notifications::CreateJob.perform later(...), passando 0s
parametros necessarios para a criagdo da notificagao.

» Reutilizacao de Cdédigo: Um médulo Notifications: :HookHelpers foi cri-
ado para compartilhar I6gicas comuns entre os diferentes hooks, como o método
schedule_notification (um encapsulador para CreateJob.perform_ -
later) e event_key (para gerar chaves de evento Unicas).



41

Essa abordagem mantém os modelos da aplicacao livres de regras complexas de notifi-
cagao, centralizando a decisao de quando e quem notificar nos médulos de Hook. Dessa forma,
0 processamento pesado — como criacao de registros, calculos de agendamento ou chamadas
externas — é deslocado para o sistema de jobs em segundo plano, reduzindo o acoplamento e
preservando o desempenho do processo web.

4.2.6 Estratégia de Testes e Validacao

Garantir a confiabilidade de um sistema de notificagbes assincrono e distribuido (entre
dois bancos de dados e multiplos servigos) exige uma estratégia de testes robusta. A aborda-
gem utilizada foi a de testes de unidade com RSpec, focando em isolar e validar cada compo-
nente da arquitetura. A cobertura de testes foi dividida da seguinte forma:

» Testes de Modelo (Models):

— Notification: Testa as validagbes, 0s escopos (especialmente
pending_to_send, validando sua légica de tempo) e os callbacks, ga-
rantindo que s&o chamados corretamente.

— NotificationTemplate /NotificationRule: Testam as associa-
¢cOes e validagdes bésicas.

» Testes de Callback (Models):

— Testes de integracédo de baixo nivel (ex: em spec/models/document_—
spec.rb) que usam 0 matcher have_enqueued_-

job (Notifications: :CreateJdob).

— Esses testes confirmam que, ao criar ou atualizar um modelo (ex:
create (:document)), o callback after_commit é disparado corre-

tamente e enfileira o CreateJob.

— "Dublés"(Stubs) sdo usados para isolar o callback testado de ou-
tros callbacks (ex: allow (document) .to receive (:create_-

signatures)) para evitar "ruido"nos testes.
» Testes de Job (Jobs):

— Utilizam o ActiveJob: :TestHelper e seus malchers (ex: have_—

enqueued_ job).

— CreateJob: Testa se o método perform chama corretamente o
Notifications::SchedulerService com 0s argumentos que rece-
beu.



42

— SchedulerPollerJob: Testa se 0 perform consulta o escopo
Notification.pending_to_send (que é "dublado") e chama o
Notifications::ProcessorService para cada notificagdo retor-
nada.

— DispatchJdob: Testa se o perform encontra a notificagdo, chama
Notifications::Dispatcher.new(notification).callere-

levanta excecbes para acionar os retfries do Solid Queue.
» Testes de Servico (Services):

— SchedulerService: Testa todos os caminhos légicos: criagdo de notifi-
cagdes pending (para agora), scheduled (com regras days_before
ou hours_after), e alégica de idempoténcia (ndo sobrescrever uma noti-

ficagdo sent ou failed).

— ProcessorService: O teste mais complexo. "Dubla"(stubs) o
StopChecker e usa have_enqueued_ job para verificar a légica:

« Testa se os guards (verificacoes iniciais) funcionam (ex: return if
notification.sent?).

= Testa se o job é cancelado se StopChecker.met? for true.

« Testa se o0 job falha se attempts >= max_attempts.

= Testa a logica de "envio Unico"(marca como sent apds enfileirar).

= Testa a logica "insistente"(marca como scheduled para o futuro).

— Dispatcher: "Dubla"(stubs) o0 NotificationMailer e verifica se
deliver_later é chamado para o canal email.

» Testes de Mailer (Mailers):

Em spec/mailers/notification_mailer_spec.rb, testa o0 mé-

todo generic_email.

Verifica se os cabecalhos (to, subject, from) estdo corretos.

Verifica se a interpolagao das varidveis (ex: $<academic_name>) esta fun-

cionando no assunto e no corpo.

Verifica se o fallback para chaves ausentes (Hash.new { ... })impede

o0 KeyError.

Verifica se ambas as partes, text /plain (com <br> convertido para

n) e text/html (com <br>), sdo geradas.

Esta estratégia de testes de unidade granulares permite que o sistema seja refatorado
com seguranga e que qualquer falha no fluxo de notificacdo possa ser identificada e corrigida.



43

4.3 Resultados obtidos

A implementagéo do sistema de notificagdes no SGTCC resultou em uma arquitetura
isolada do fluxo principal da aplicagéao, permitindo o envio automatizado de comunicacdes aos
usuarios de forma assincrona e confidvel. Com a inclusdo do framework Active Job e do
adaptador Solid Queue, foi possivel estabelecer um fluxo de processamento independente
do servidor web, garantindo maior desempenho, escalabilidade e tolerancia a falhas durante a
execucao das tarefas de notificagéo.

Embora na metodologia proposta inicialmente previsse a divisdo dos requisitos em tare-
fas menores e independentes, acompanhadas de revisdes continuas pela equipe por meio do
GitFlow e da gestao no ClickUp, essa abordagem nao pdde ser integralmente seguida durante
o desenvolvimento. A principal dificuldade esteve relacionada a incompatibilidade de horarios
entre o autor e os orientadores, o que dificultou a realizagdo de revisdes frequentes, reunides
de alinhamento e validag6es incrementais ao longo do processo.

Diante desse cenario, a estratégia de desenvolvimento precisou ser adaptada. Em vez
de uma divisao refinada em pequenas tarefas com ciclos constantes de revisao, o trabalho foi
conduzido de maneira mais concentrada: os requisitos previamente levantados foram analisa-
dos e implementados de forma continua, com validagdes realizadas a medida que a funciona-
lidade completas foi concluida. Essa mudanga permitiu manter o progresso do projeto apesar
das limitagdes de comunicacao.

Assim, o desenvolvimento acabou ocorrendo em ciclos mais longos e com maior auto-
nomia por parte do autor, priorizando a entrega funcional da implementagéo no sistema para
posterior avaliacdo conjunta. Essa adaptacao do processo metodolégico ndo impediu o cumpri-
mento dos objetivos definidos, mas representou uma diferenca relevante entre o planejamento
inicial e a execugao pratica do trabalho.

O principal resultado obtido foi a criacdo de um mddulo de notificagdbes completamente
desacoplado da légica principal do sistema, operando de maneira autbnoma sobre um banco
de dados secundario (SQLite). Essa separacao eliminou os problemas de bloqueio (database
locking) anteriormente observados durante operagdes simultaneas de leitura e escrita, além de
permitir que o processamento de mensagens e o envio de e-mails ocorressem sem impacto
perceptivel no desempenho do SGTCC.

As funcionalidades implementadas permitem que o sistema:

» Gere notificacdes automaticas baseadas em eventos do sistema, como criacao de do-
cumentos, prazos de envio e agendamento de bancas;

» Agende notificagbes futuras conforme regras configuraveis de antecedéncia e reenvio;

* Interrompa notificagbes de lembrete de forma automatica, quando a agao esperada
(como uma assinatura pendente) é concluida;



44

+ Enfileire e processe os envios em segundo plano, evitando travamentos e sobrecarga

do servidor principal;

Além disso, a integragao dos hooks aos modelos principais da aplicagao tornou o pro-
cesso de geragdo de notificagdes transparente e automatizado. A criacdo ou atualizacdo de
registros relevantes (como documentos, prazos ou bancas) passa a acionar imediatamente o
enfileiramento das notificagcdes correspondentes, sem a necessidade de intervengdo manual.

A partir dos testes realizados, foi possivel confirmar que o sistema consegue lidar com
multiplas notificagdes simultdneas, mantendo consisténcia nos registros e enviando os e-mails
corretamente de acordo com as regras estabelecidas. O comportamento esperado foi validado
para diferentes cenarios — como notificagdes insistentes, notificacdes Unicas e notificacoes
com multiplos destinatarios —, demonstrando a robustez e a previsibilidade do mecanismo de
agendamento e envio.

Resumidamente, o desenvolvimento resultou em uma melhoria na capacidade do
SGTCC de se comunicar com seus usuarios, automatizando processos que antes eram ma-
nuais e centralizando a gestao de notificagdes. A arquitetura construida possibilita, ainda, a
expansao para novos tipos de aviso e a inclusdo futura de outros canais de comunicacao, como
mensagens instantaneas, sem necessidade de reestruturacao do sistema existente.

4.3.1 Meétricas

O processo de desenvolvimento das notificagdes foi desenvolvido em 17 commits cri-
ando 1 PR (Pull Request), modificando 80 arquivos, adicionando 2832 linhas e removendo 49.

A ampliagéo dos testes automatizados foi diretamente relacionada as funcionalidades
de notificacdes desenvolvidas neste trabalho. Antes das implementagbes, o sistema possuia
812 testes automatizados, distribuidos entre modelos, servicos e controladores ja existentes. O
conjunto de testes criado para validar o novo médulo de notificacdes adicionou mais 45 testes,
totalizando 857 testes ao final da implementacao.

Os testes produzidos abrangem geragao de notificagdes, callbacks de modelos, agenda-
mento, despacho, regras de repeticdo, envio de e-mails, verificacdo de payloads, interpretacédo
de templates, falhas de interpolagéo, execugéo de jobs assincronos e fluxos de processamento
periddico. Esses cenarios representam 100% dos fluxos introduzidos por este trabalho. Em ter-
mos de verificagdes (assertivas), o nimero total passou de 974 para 1033, um acréscimo de 59
verificacdes decorrentes da validacdo dos comportamentos esperados.

Em resumo, este trabalho contribuiu diretamente com:
* 45 novos testes especificamente relacionados ao sistema de notificacoes;
* 59 novas verificacoes;

+ validacao completa de todos os fluxos sincronos e assincronos introduzidos.



45

Essas métricas demonstram que as funcionalidades desenvolvidas foram incorporadas
ao sistema com garantia de qualidade, rastreabilidade e comportamento validado, refletindo
diretamente nos objetivos deste trabalho.



46

5 CONSIDERAGOES FINAIS

O presente trabalho teve como objetivo principal o desenvolvimento e a implementacao
de uma estratégia de notificacées automaticas para o sistema SGTCC, considerando as reais
necessidades dos usuarios envolvidos nos processos de TCC. A partir do levantamento de
requisitos com discentes e docentes, foi possivel identificar os principais pontos de falha na
comunicacgao sobre prazos, eventos e pendéncias, que frequentemente resultavam em atrasos
ou retrabalho.

Com base nessas informagoes, foi projetada e implementada uma arquitetura de notifi-
cacdes integrada ao sistema existente, com foco na clareza, na confiabilidade e na pontualidade
das mensagens. A solugdo proposta tem como fundamento o uso do framework Active Job
e do adaptador Solid Queue, que possibilitaram o processamento assincrono de tarefas,
garantindo o envio das notificacées de forma eficiente, sem comprometer o desempenho da
aplicagao principal.

Com a implementacado do médulo de notificagbes esperam-se resultados significativos
para o SGTCC ao decorrer do tempo. O sistema passou a ser capaz de gerar e enviar notifica-
cOes automaticas de acordo com eventos internos, como a criagao de documentos, prazos de
entrega e agendamento de bancas, além de permitir agendamentos futuros e reenvios basea-
dos em regras configuraveis. A arquitetura adotada também eliminou problemas de concorréncia
e bloqueio de banco de dados, assegurando maior estabilidade e fluidez nas operagbes.

Do ponto de vista técnico, a principal contribuicdo deste trabalho estda na automacéao e
na comunicagdo entre os usuarios do sistema. Antes da implementagédo, 0 acompanhamento
de prazos e pendéncias dependia majoritariamente de acées manuais, o que resultava em es-
quecimentos e atrasos. Com a nova estrutura, docentes, discentes e demais envolvidos passam
a receber lembretes e avisos automaticos, reduzindo a probabilidade de falhas humanas e me-
Ihorando a organizacao e a transparéncia no acompanhamento das etapas do TCC.

A utilizacdo de Service Objects, Jobs e Hooks contribuiu para uma arquitetura mais
modular, organizada e aderente aos principios de boas praticas de engenharia de software,
como o Principio da Responsabilidade Unica (SRP)' e a separagdo de preocupagdes. Essa
abordagem tornou o codigo mais legivel, testavel e preparado para expansdes futuras, além
de facilitar a manutencéo e o trabalho colaborativo dentro da equipe de desenvolvimento do
SGTCC.

Entre as limitagbes identificadas, destaca-se que a versdo atual do sistema realiza no-
tificacbes exclusivamente por e-mail. Apesar de a arquitetura desenvolvida permitir a incluséo
de outros canais, como notificagoes via WhatsApp ou alertas internos na prépria plataforma,
essas funcionalidades ainda ndo foram implementadas. A estrutura atual, baseada em servicos
e jobs desacoplados, permite que novos canais sejam adicionados sem alterar o fluxo existente:
bastaria criar novos servigos responsaveis pelo envio via APl do WhatsApp ou pelo disparo de

' Definido por Robert C. Martin em Agile Software Development: Principles, Patterns, and Practices.



47

notificagdes internas, reutilizando o mesmo mecanismo de agendamento, enfileiramento e re-
envio. A incorporagao desses dois novos canais poderia ampliar 0 alcance das notificagdes e
aumentar a taxa de engajamento dos usuarios, pois a preferéncia de meios de comunicacao
difere entre os diferentes tipos de usuarios.

Outra limitagéo diz respeito ao uso do banco de filas baseado em SQ1L.i t e, que, embora
leve e eficiente, pode ndo ser o mais adequado para cenarios de produgdo com alta demanda.
No entanto, esse nao é o caso do SGTCC, cujo volume de uso é moderado e controlado. Dessa
forma, 0 SQLite se apresenta como uma solugao ideal para o contexto institucional atual,
oferecendo simplicidade, baixo custo operacional e desempenho suficiente para o volume de
tarefas processadas pelo sistema.

Como trabalhos a complementar o desenvolvimento dessa funcionalidade, propbe-se
a ampliagdo do sistema de notificagbes com a integracdo de novos canais de comunicagao,
especialmente via APl do WhatsApp e notificacdes em tempo real dentro da prépria aplicagao.

Concluindo, o sistema de notificagdes desenvolvido representa um avango significativo
na comunicagao e na eficiéncia operacional do SGTCC. A solucdo automatiza processos es-
senciais, reduz erros decorrentes de falha humana e estabelece uma base sélida para futuras
melhorias. Dessa forma, contribui diretamente para a modernizacao do sistema e para a evolu-

¢ao continua da gestao académica na instituicao.



48

REFERENCIAS

ATLASSIAN. Gitflow Workflow. 2025. Acesso em: 4 jun. 2025. Disponivel em: https:
/lwww.atlassian.com/br/git/tutorials/comparing-workflows/gitflow-workflow.

CLICKUP. ClickUp Documentation. 2025. Documentacao oficial da plataforma de
gerenciamento de projetos. Disponivel em: https://help.clickup.com. Acesso em: 05 jun. 2025.

COINT. Normas Operacionais Complementares do Trabalho de Conclusao de

Curso do Curso Superior de Tecnologia em Sistemas para Internet - Campus
Guarapuava. 2023. Disponivel em: https://tcc.tsi.pro.br/uploads/attached_document/file/2/
normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf. Acesso em: 23 abr. 2025.

DOCKER. Docker Documentation. 2025. Documentacao oficial. Disponivel em:
https://docs.docker.com. Acesso em: 06 jun. 2025.

FERREIRA Erico D. Desenvolvimento de um sistema para o gerenciamento do processo
de Trabalho de Conclusao de Curso do curso de Tecnologia em Sistemas para Internet
da UTFPR Campus Guarapuava. 2015. Monografia (TCC) — Universidade Tecnolégica
Federal do Parang, 2015.

FIGMA. Figma — Design, Prototype, and Collaborate All in the Browser. 2025.
Documentacao oficial. Disponivel em: https://www.figma.com. Acesso em: 06 jun. 2025.

GIT. Git — Distributed Version Control System. 2025. Documentagéao oficial. Disponivel em:
https://git-scm.com. Acesso em: 05 jun. 2025.

GITHUB. GitHub Docs. 2025. Documentacao oficial. Disponivel em: https://docs.github.com.
Acesso em: 05 jun. 2025.

GitLab Inc. O que é CI/CD? 2025. Acesso em: 4 jun. 2025. Disponivel em: https:
/fabout.gitlab.com/pt-br/topics/ci-cd/.

LIMA, A. C. D. Projeto e implementacao de interface baseada na experiécia do usuario
para um sistema de gerenciamento de trabalho de conclusao de curso. 2023. Monografia
(TCC) — Universidade Tecnolégica Federal do Parana, 2023.

LUZ, G. S. da. Atuallizacao do Framework Rails para garantia de evolucao do Sistema de
Gestao de TCC. 2024. Monografia (Projeto de TCC) — Universidade Tecnol6gica Federal do
Parana, 2024.

RAILS, R. on. Ruby on Rails Guides. 2025. Documentacao oficial. Disponivel em:
https://guides.rubyonrails.org. Acesso em: 05 jun. 2025.

SEBRAE. Metodologia MoSCoW: Como priorizar requisitos de projetos de forma
estratégica. 2022. Acessado em: 12 de junho de 2025. Disponivel em: https://sebrae.com.br/
Sebrae/Portal%20Sebrae/Arquivos/ebook _sebrae_metodologia_moscow.pdf.

SILVA, R. G. A. Aperfeicoamento do Sistema de Gestao de processos de Trabalho
de Conclusao de curso de Tecnologia em Sistemas para Internet Da UTFPR Campus
Guarapuava. 2019. Monografia (TCC) — Universidade Tecnol6gica Federal do Parang, 2019.


https://www.atlassian.com/br/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/br/git/tutorials/comparing-workflows/gitflow-workflow
https://help.clickup.com
https://tcc.tsi.pro.br/uploads/attached_document/file/2/normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf
https://tcc.tsi.pro.br/uploads/attached_document/file/2/normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf
https://docs.docker.com
https://www.figma.com
https://git-scm.com
https://docs.github.com
https://about.gitlab.com/pt-br/topics/ci-cd/
https://about.gitlab.com/pt-br/topics/ci-cd/
https://guides.rubyonrails.org
https://sebrae.com.br/Sebrae/Portal%20Sebrae/Arquivos/ebook_sebrae_metodologia_moscow.pdf
https://sebrae.com.br/Sebrae/Portal%20Sebrae/Arquivos/ebook_sebrae_metodologia_moscow.pdf

	Resumo
	Abstract
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	1.2 Justificativa

	2 Materiais e Métodos
	2.1 Materiais
	2.2 Métodos
	2.2.1 Levantamento e Priorização de Requisitos
	2.2.2 Processo de Desenvolvimento


	3 Análise e Projeto
	3.1 Descrição do SGTCC
	3.2 Levantamento dos requisitos
	3.3 Análise de Requisitos
	3.3.1 Histórias de usuário
	3.3.2 Protótipos de Telas


	4 Estratégias de Notificação do SGTCC
	4.1 Definição
	4.1.1 Modelos de notificação
	4.1.2 Templates de E-mail
	4.1.3 Fluxo de Envio

	4.2 Implementação das funcionalidades
	4.2.1 Configuração do ambiente de desenvolvimento
	4.2.2 Estruturação das classes de notificação
	4.2.3 Processamento assíncrono com Active Job e Solid Queue
	4.2.4 Arquitetura de Serviços (Service Objects)
	4.2.5 Integração com Eventos do Sistema (Hooks)
	4.2.6 Estratégia de Testes e Validação

	4.3 Resultados obtidos
	4.3.1 Métricas


	5 Considerações Finais
	Referências

