
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

RAUL FERREIRA DA ROCHA

ESTRATÉGIA DE NOTIFICAÇÕES NO SISTEMA DE GESTÃO DE TCC DO
CURSO DE SISTEMAS PARA INTERNET: DEFINIÇÃO E IMPLEMENTAÇÃO

GUARAPUAVA

2025

RAUL FERREIRA DA ROCHA

ESTRATÉGIA DE NOTIFICAÇÕES NO SISTEMA DE GESTÃO DE TCC DO

CURSO DE SISTEMAS PARA INTERNET: DEFINIÇÃO E IMPLEMENTAÇÃO

Notification Strategy in the Thesis Management System of the Internet

Systems Course: Definition and Implementation

Trabalho de Conclusão de Curso de Graduação
apresentado como requisito para obtenção do
título de Tecnólogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnológica Federal do Paraná.

Orientador : Profº. Drº. Diego Marczal

Coorientador: Profª. Drª. Renata Luiza Stange

GUARAPUAVA

2025

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do traba-
lho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es).
Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são co-
bertos pela licença.4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

RAUL FERREIRA DA ROCHA

ESTRATÉGIA DE NOTIFICAÇÕES NO SISTEMA DE GESTÃO DE TCC DO

CURSO DE SISTEMAS PARA INTERNET: DEFINIÇÃO E IMPLEMENTAÇÃO

Trabalho de Conclusão de Curso de Graduação
apresentado como requisito para obtenção do
título de Tecnólogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnológica Federal do Paraná.

Data de aprovação: 01/Dezembro/2025

Diego Marczal
Doutor

Universidade Tecnológica Federal do Paraná

Andres Jessé Porfirio
Doutor

Universidade Tecnológica Federal do Paraná

Dênis Lucas Silva
Mestre

Universidade Tecnológica Federal do Paraná

GUARAPUAVA

2025

RESUMO

O Sistema de Gerenciamento de Trabalhos de Conclusão de Curso (SGTCC) desempenha

papel central na organização das etapas de entrega, avaliação e acompanhamento dos TCCs

do curso de Sistemas para Internet da UTFPR – Câmpus Guarapuava. Entretanto, mesmo

após diversas evoluções ao longo dos anos, o sistema ainda apresentava lacunas relacionadas

à comunicação entre seus usuários, especialmente no que se refere ao acompanhamento de

prazos, pendências documentais e eventos como bancas e reuniões. Diante desse cenário, este

trabalho teve como objetivo definir e implementar uma estratégia de notificações automáticas

capaz de aprimorar o fluxo de comunicação entre coordenadores, docentes e acadêmicos sem

a necessidade de intervenção manual. A metodologia empregada envolveu o levantamento

e a priorização dos requisitos por meio da análise dos fluxos do sistema e da aplicação de

um formulário aos usuários, utilizando o método MoSCoW para classificação. A partir disso,

foram modeladas regras de notificação, templates de mensagens e fluxos de envio, integrados

ao SGTCC utilizando Ruby on Rails, Active Job e Solid Queue, com arquitetura assíncrona

e banco de dados dedicado exclusivamente ao módulo de notificações. O desenvolvimento

contemplou desde a configuração do ambiente até a estruturação de serviços, modelos e

hooks responsáveis pela geração e processamento das notificações. Como resultados, foram

implementadas notificações de atualização de calendário, pendências de assinatura, prazos de

envio, agendamento e confirmação de bancas, registros de reuniões, submissão de termos e

outras situações críticas para o andamento do TCC. A suíte de testes também foi ampliada,

garantindo maior confiabilidade às funcionalidades implementadas. Conclui-se que a estratégia

de notificações desenvolvida contribuiu para melhorar a organização, a transparência e o

acompanhamento das atividades do TCC, além de estabelecer bases estruturais para futuras

extensões, como a integração com outros canais de comunicação.

Palavras-chave: notificações; sistemas acadêmicos; gestão de tcc; automação; ruby on rails.

ABSTRACT

The Thesis Management System (SGTCC) plays a central role in organizing the stages of

submission, evaluation, and monitoring of final papers in the Internet Systems course at UTFPR

– Guarapuava. However, even after several improvements over the years, the system still

presented gaps related to communication among its users, particularly regarding the monitoring

of deadlines, document pendencies, and academic events such as meetings and examination

boards. In this context, this work aimed to define and implement an automatic notification

strategy capable of improving the communication flow among coordinators, faculty member,

and students without requiring manual intervention. The methodology included identifying and

prioritizing requirements through the analysis of system workflows and the application of a

user questionnaire, employing the MoSCoW method for classification. Based on these findings,

notification rules, message templates, and delivery flows were modeled and integrated into the

SGTCC using Ruby on Rails, Active Job, and Solid Queue, with an asynchronous architecture

supported by a database dedicated exclusively to the notification module. The development

process ranged from environment configuration to the structuring of services, models, and

hooks responsible for generating and processing notifications. As a result, notifications were

implemented for calendar updates, signature pendencies, submission deadlines, scheduling

and confirmation of examination boards, meeting records, term submissions, and other critical

situations for the progress of the final paper process. The test suite was also expanded,

ensuring greater reliability of the implemented functionalities. It is concluded that the developed

notification strategy contributes to improving organization, transparency, and the monitoring of

TCC activities, while also establishing structural foundations for future extensions, such as the

integration with additional communication channels.

Keywords: notifications; academic systems; tcc management; automation; ruby on rails.

LISTA DE ABREVIATURAS E SIGLAS

Siglas

CD Entrega Contínua

CI Integração Contínua

SGTCC Sistema de Gerenciamento de Trabalho de Conclusão de Curso

SI Sistemas para Internet

SMS Serviço de Mensagens Curtas, do inglês Short Message Service

TCC Trabalho de Conclusão de Curso

UTFPR Universidade Tecnológica Federal do Paraná

UX Experiência do usuário, do inglês User Experience

SUMÁRIO

1 INTRODUÇÃO . 7

1.1 Objetivos . 8

1.1.1 Objetivo geral . 8

1.1.2 Objetivos específicos . 8

1.2 Justificativa . 9

2 MATERIAIS E MÉTODOS . 10

2.1 Materiais . 10

2.2 Métodos . 11

2.2.1 Levantamento e Priorização de Requisitos 11

2.2.2 Processo de Desenvolvimento . 12

3 ANÁLISE E PROJETO . 14

3.1 Descrição do SGTCC . 14

3.2 Levantamento dos requisitos . 15

3.3 Análise de Requisitos . 17

3.3.1 Histórias de usuário . 20

3.3.2 Protótipos de Telas . 22

4 ESTRATÉGIAS DE NOTIFICAÇÃO DO SGTCC 24

4.1 Definição . 24

4.1.1 Modelos de notificação . 25

4.1.2 Templates de E-mail . 29

4.1.3 Fluxo de Envio . 31

4.2 Implementação das funcionalidades . 33

4.2.1 Configuração do ambiente de desenvolvimento 34

4.2.2 Estruturação das classes de notificação . 37

4.2.3 Processamento assíncrono com Active Job e Solid Queue 37

4.2.4 Arquitetura de Serviços (Service Objects) 38

4.2.5 Integração com Eventos do Sistema (Hooks) 40

4.2.6 Estratégia de Testes e Validação . 41

4.3 Resultados obtidos . 43

4.3.1 Métricas . 44

5 CONSIDERAÇÕES FINAIS . 46

REFERÊNCIAS . 48

7

1 INTRODUÇÃO

A realização de um Trabalho de Conclusão de Curso (TCC) constitui requisito obrigató-

rio para a conclusão e obtenção do diploma em diversos cursos de graduação, representando

o momento em que o estudante aplica os conhecimentos adquiridos ao longo do curso em uma

ou mais áreas de formação (COINT, 2023). Esse processo, no entanto, envolve a produção e o

gerenciamento de múltiplos documentos, o que pode dificultar sua organização e acompanha-

mento. Com o intuito de centralizar e facilitar esse gerenciamento, foi desenvolvido o Sistema

de Gerenciamento de Trabalho de Conclusão de Curso (SGTCC), sistema que busca simplificar

as etapas de entrega e avaliação dos trabalhos, além de reduzir a necessidade de documentos

impressos. Assim como ocorre com diversas aplicações, o SGTCC encontra-se em constante

evolução, visando atender às necessidades dos usuários e tornar mais ágeis tarefas como a as-

sinatura de documentos, o agendamento de bancas e a avaliação de defesas. Contudo, mesmo

após as atualizações implementadas por Ferreira (2015), Silva (2019), Lima (2023) e Luz (2024),

o sistema ainda apresenta oportunidades de aprimoramento.

O cumprimento dos prazos durante o desenvolvimento do TCC é essencial para o bom

andamento do processo, uma vez que atrasos podem gerar prejuízos tanto para os discentes

quanto para os docentes. Para os estudantes, o não cumprimento de prazos pode resultar na

reprovação em etapas do TCC e no consequente adiamento da conclusão do curso. Para os pro-

fessores, pode comprometer o planejamento das atividades, dificultar a avaliação adequada dos

trabalhos e gerar sobrecarga de tarefas. Além disso, os atrasos afetam diretamente a organiza-

ção das bancas. Outro fator que impacta o gerenciamento do TCC é a ausência de assinaturas

em documentos, o que impede sua validação formal e o registro adequado dos trâmites. Tanto

estudantes quanto docentes podem ser responsáveis pela não entrega de documentos ou pela

falta de assinaturas dentro dos prazos estabelecidos.

Diante desses desafios, esta proposta visa oferecer uma solução que mantenha todos

os envolvidos no processo de gerenciamento do TCC devidamente informados sobre prazos e

pendências, a fim de minimizar os prejuízos mencionados e prevenir outros que possam surgir

em decorrência do não cumprimento das etapas. Para isso, podem ser adotadas diferentes es-

tratégias de notificação, cujo objetivo é comunicar os usuários de maneira eficiente, promovendo

maior engajamento. Essas estratégias podem ser implementadas por meio de notificações au-

tomáticas por e-mail, mensagens em aplicativos de comunicação ou lembretes via Serviço de

Mensagens Curtas, do inglês Short Message Service (SMS).

O desenvolvimento de uma estratégia de notificação para o SGTCC envolve desafios

técnicos e funcionais. Entre eles, destaca-se a definição dos tipos de notificação mais ade-

quados a cada situação, de modo a equilibrar efetividade e evitar o excesso de comunicações

que possam ser ignoradas pelos usuários. Além disso, é necessário garantir a integridade e a

confiabilidade das informações transmitidas, assegurando que os dados sobre prazos e pen-

dências estejam sempre atualizados e sincronizados com o sistema. Outro aspecto relevante

8

diz respeito à privacidade dos usuários e à conformidade com as normas de proteção de da-

dos, especialmente no envio de informações por e-mail ou SMS. Do ponto de vista técnico, a

implementação requer integração com serviços externos de envio de mensagens e o desenvol-

vimento de uma lógica eficiente para o disparo automático das notificações, de forma escalável

e sustentável. Também devem ser considerados aspectos de usabilidade, assegurando que as

mensagens sejam compreensíveis e que efetivamente contribuam para a gestão eficiente do

TCC.

Dessa forma, este trabalho propôs definir e implementar uma estratégia de notificação

no SGTCC, com o objetivo de garantir que todos os participantes do processo de TCC estejam

cientes dos prazos e atualizações, assegurando o cumprimento adequado de todas as etapas

previstas.

1.1 Objetivos

Neste trecho, são descritos os objetivos que orientaram o desenvolvimento deste traba-

lho, tanto em nível geral quanto específico.

1.1.1 Objetivo geral

Formular e implementar uma estratégia de notificações automáticas de prazos e pen-

dências no sistema SGTCC, visando aprimorar o acompanhamento e a gestão do processo de

TCC.

1.1.2 Objetivos específicos

• Identificar os pontos do processo de TCC que demandam notificações automáticas,

com base na análise do fluxo de atividades e nas necessidades dos usuários do

SGTCC.

• Definir os tipos, os canais e os momentos adequados para o envio das notificações,

considerando os diferentes perfis de usuários (discentes, docentes e coordenadores).

• Elaborar a estratégia de notificações automáticas, detalhando a lógica de acionamento,

a frequência, a personalização e o conteúdo das mensagens.

• Desenvolver e integrar a funcionalidade de notificações ao sistema SGTCC, utilizando

os recursos disponíveis no framework Ruby on Rails.

9

1.2 Justificativa

Com o objetivo de facilitar o gerenciamento dos TCCs do curso de Sistemas para Inter-

net (SI) do campus Guarapuava da Universidade Tecnológica Federal do Paraná (UTFPR), foi

desenvolvido o SGTCC. Apesar de sua utilidade e importância para o curso, o sistema ainda

apresenta oportunidades de aprimoramento, especialmente no que se refere à comunicação

proativa com seus usuários.

Uma das principais lacunas apontadas pelos usuários é a ausência de notificações que

os informem sobre prazos e pendências relacionadas ao processo do TCC. Essa falta de co-

municação pode ocasionar atrasos na entrega de documentos e na realização de bancas de

defesa, o que pode, consequentemente, gerar reprovação em etapas do TCC, retrabalho e até

atrasos na colação de grau dos discentes. Outro problema recorrente diz respeito à não rea-

lização de assinaturas dentro dos prazos estabelecidos, o que pode comprometer a emissão

de documentos oficiais, gerando entraves burocráticos. Soma-se a isso a inexistência de avisos

sobre eventos importantes do processo, como o agendamento, a alteração ou o cancelamento

de bancas, bem como sobre mudanças nos prazos, o que pode gerar confusão e desorganiza-

ção entre os participantes. Além disso, os envolvidos no processo não dispõem de uma maneira

simples e clara de acompanhar o tempo decorrido desde o início do TCC e o tempo restante

para a conclusão de suas etapas, o que frequentemente leva ao acúmulo de tarefas próximo ao

encerramento dos prazos.

Para suprir essas demandas, a formulação e implementação de uma estratégia de noti-

ficação se apresentam como uma solução eficaz, já amplamente utilizada em diversas aplica-

ções. Desse modo, o desenvolvimento dessa funcionalidade no SGTCC visa manter os usuários

constantemente informados sobre prazos, pendências e atualizações do processo, bem como

sobre a criação, alteração e cancelamento de bancas de defesa. A definição da estratégia ado-

tada foi fundamentada nas necessidades e nas experiências relatadas pelos próprios usuários,

além de considerar práticas consolidadas em outras aplicações que enfrentam desafios seme-

lhantes.

10

2 MATERIAIS E MÉTODOS

Neste capítulo estão descritos os materiais, ferramentas e métodos utilizados para for-

mular e implementar uma estratégia de notificações para o SGTCC.

2.1 Materiais

Dentre os materiais descritos a seguir, estão incluídas ferramentas e tecnologias utiliza-

das para o planejamento e desenvolvimento:

• Ruby on Rails: Já utilizado para o desenvolvimento do SGTCC, o Ruby on Rails é

um framework full-stack de código aberto para a linguagem Ruby. Ele facilita a cria-

ção de aplicações web robustas e organizadas, adotando convenções que reduzem a

necessidade de configurações manuais, promovendo o uso de boas práticas de de-

senvolvimento e acelerando o processo de codificação (RAILS, 2025).

• Git e GitHub: O Git é um sistema de controle de versão distribuído que permite acom-

panhar e gerenciar mudanças no código-fonte ao longo do tempo, facilitando a co-

laboração entre desenvolvedores e garantindo a integridade do projeto (GIT, 2025).

Já o GitHub é uma plataforma baseada na nuvem que utiliza o Git para hospedar

e versionar repositórios, permitindo colaboração em tempo real, integração contínua

e automação de fluxos de trabalho (GITHUB, 2025). A escolha dessas ferramentas

deve-se ao suporte robusto a versionamento, ao histórico detalhado de alterações e à

integração nativa com pipelines de automação, essenciais para acompanhar as evolu-

ções no módulo de notificações, além da utilização prévia dessas tecnologias para o

gerenciamento do SGTCC.

• Figma: Ferramenta de design de interface baseada na web que permite colaboração

em tempo real entre designers e desenvolvedores. Com recursos de prototipagem,

componentes reutilizáveis e compartilhamento facilitado, o Figma é utilizado para a

criação e validação visual de interfaces (FIGMA, 2025). Foi escolhido por permitir a

rápida criação de protótipos das telas relacionadas às notificações.

• Docker: Plataforma de virtualização leve que permite empacotar aplicações e suas

dependências em containers, garantindo consistência entre ambientes de desenvol-

vimento, testes e produção. Facilita a portabilidade, escalabilidade e automação de

processos de implantação (DOCKER, 2025). A utilização do Docker para padronizar o

ambiente de desenvolvimento já estava presente desde os estágios anteriores do de-

senvolvimento, garantindo reprodutibilidade nos testes e evitando inconsistências entre

diferentes máquinas.

11

• SQLite: Banco de dados relacional leve, simples e amplamente utilizado em aplica-

ções que necessitam de um armazenamento local rápido e sem a complexidade de

um servidor dedicado. Por ser baseado em arquivos, o SQLite apresenta baixo custo

de manutenção e excelente desempenho para operações de leitura e escrita em cená-

rios de menor escala. No contexto deste trabalho, foi utilizado como banco de dados

secundário especificamente para o módulo de notificações, armazenando as notifica-

ções geradas e a fila de jobs do ActiveJob. Sua escolha se deve à necessidade de isolar

o armazenamento e o processamento de notificações do banco principal do SGTCC,

garantindo maior independência, menor impacto no desempenho geral do sistema e

simplificando a configuração do ambiente de testes.

• ClickUp: Plataforma de gerenciamento de projetos que centraliza tarefas, cronogra-

mas, documentos e comunicação da equipe em um único ambiente. Sua flexibilidade

e ampla capacidade de personalização ajudam a estruturar e acompanhar as etapas

do projeto, facilitando a organização, o cumprimento de prazos e a produtividade da

equipe envolvida (CLICKUP, 2025). Foi utilizado para planejar, acompanhar e docu-

mentar o progresso do desenvolvimento das funcionalidades, garantindo maior consis-

tência e controle sobre as diversas etapas do desenvolvimento.

2.2 Métodos

Para formular e implementar um sistema de notificações no SGTCC são adotados os

seguintes passos:

2.2.1 Levantamento e Priorização de Requisitos

Para formular a estratégia de notificações do SGTCC, inicialmente identifica-se quais

situações do sistema demandam comunicação aos usuários. Esse processo tem início com

uma análise das funcionalidades existentes, listando-se todas as ações que potencialmente

podem gerar notificações, de forma a construir um pré-levantamento das situações notificáveis.

Com o objetivo de validar esse levantamento e complementar possíveis lacunas, aplica-

se um formulário aos usuários do SGTCC, incluindo docentes e discentes do curso de Tec-

nologia em Sistemas para Internet da UTFPR – Câmpus Guarapuava. As respostas obtidas

permitem identificar novas demandas de notificação, além de contribuir para a priorização das

já mapeadas.

A organização e priorização dos requisitos são realizadas utilizando o Método MoSCoW,

técnica amplamente empregada para classificação de itens em projetos de software. O método

categoriza cada notificação em quatro grupos — Must Have, Should Have, Could Have e Won’t

12

Have — permitindo definir sua importância relativa e orientar a execução do desenvolvimento

conforme os recursos disponíveis e o impacto esperado no sistema.

Originalmente desenvolvido por Dai Clegg, o Método MoSCoW destaca-se por sua sim-

plicidade e aplicabilidade em diferentes contextos, auxiliando na tomada de decisões e propor-

cionando uma visão estruturada das prioridades do projeto. A Figura 1 apresenta um resumo

visual da técnica (SEBRAE, 2022).

Figura 1 – Método MoSCoW

Fonte: Sebrae (2022).

2.2.2 Processo de Desenvolvimento

Após levantar e priorizar os requisitos de notificação, inicia-se o processo de desenvol-

vimento. Essa etapa começa com a subdivisão dos requisitos em tarefas menores e individuais

a serem implementadas. A gestão durante todo o processo de desenvolvimento é realizada por

meio do ClickUp, permitindo organizar as tarefas por ordem de importância e por seu estado

atual, facilitando o acompanhamento do desenvolvimento.

O fluxo de trabalho Git é organizado por meio do GitFlow, uma metodologia que divide as

ramificações (branches) do código em diferentes tipos, de acordo com a função desempenhada

por cada uma, melhorando a organização e facilitando a colaboração durante o processo de

desenvolvimento. As divisões de branches são as seguintes (ATLASSIAN, 2025):

• Main: Uma das duas ramificações principais, armazena o histórico do lançamento ofi-

cial, contendo um histórico simplificado das alterações do projeto.

• Develop: A outra ramificação principal, serve como uma ramificação para a integração

de recursos, mantendo um histórico completo das alterações do projeto.

13

• Feature: Ramificações temporárias para a implementação de recursos, criadas a partir

da última versão da branch develop, sendo integradas novamente à branch develop

depois de concluídas.

• Release: Ramificação intermediária entre a principal e a de desenvolvimento, criada

quando há recursos suficientes para um lançamento, contendo apenas atualizações

de segurança ou relacionadas ao lançamento. Ao fim, integra-se à branch main.

• Hotfix: Ramificação utilizada para correções rápidas de lançamentos em produção,

criada a partir da branch main e mesclada a ela após a correção.

Visando facilitar o processo de implementação após o desenvolvimento, utiliza-se o con-

ceito de Integração Contínua (CI)/Entrega Contínua (CD), uma automatização do processo de

desenvolvimento, desde a codificação até a implementação, agilizando o lançamento de no-

vos recursos e correções, tornando o produto mais responsivo às necessidades dos usuários.

CI refere-se à automatização de testes realizados ao mesclar branches na branch principal,

evitando conflitos de código, identificando erros ou problemas de segurança e verificando a

qualidade do código. Já o CD prepara e testa o código para ser implementado em produção,

automatizando o provisionamento da infraestrutura e o processo de lançamento das aplicações,

empacotando todos os elementos necessários para implantação em qualquer ambiente (GitLab

Inc., 2025).

Com base nos requisitos priorizados, são elaboradas Histórias de Usuário que des-

crevem as necessidades do ponto de vista dos diferentes perfis do sistema, como discentes,

docentes e coordenadores. Essas histórias servem como guia para o desenvolvimento das fun-

cionalidades de notificação, garantindo que o sistema atenda às expectativas e aos fluxos reais

de uso do SGTCC.

14

3 ANÁLISE E PROJETO

Este capítulo descreve as etapas de análise e projeto do sistema de notificações pro-

posto para o SGTCC, abordando a descrição do sistema, o levantamento e a análise dos requi-

sitos, bem como a definição da arquitetura de notificação. O objetivo principal é garantir que as

funcionalidades implementadas atendam efetivamente às necessidades dos usuários, promo-

vendo uma comunicação eficiente sobre prazos e eventos relevantes ao processo de TCC.

3.1 Descrição do SGTCC

No curso de SI, o TCC é dividido em três partes principais, cada uma com entregas

distintas e bancas de defesa: elas são Proposta, Projeto e Monografia. Além disso, o processo

é dividido em duas unidades curriculares, ocupando dois semestres letivos. Nesse contexto de

tempo limitado, o cumprimento de prazos e a boa gestão do processo tornam-se importantes

(COINT, 2023).

Com base nisso, o SGTCC teve seu desenvolvimento iniciado em 2015, com o objetivo

de tornar digital a gestão das atividades referentes ao TCC do Curso de SI do Campus Gua-

rapuava da UTFPR, visando centralizar as informações e regulamentos, além de simplificar os

processos necessários (FERREIRA, 2015).

O projeto teve continuidade em 2019, sendo reestruturado e contando com a melhoria

nos módulos do sistema, como a criação de tipos de usuários, o upload de documentos relaci-

onados ao TCC, o cadastro de reuniões realizadas e o agendamento de defesas. Além disso,

ocorreu a implementação de assinaturas eletrônicas, visando eliminar o uso de papel e tornar

toda a gestão digital. (SILVA, 2019).

Durante o segundo semestre de 2023, o sistema teve outras contribuições realizadas

pelos alunos da disciplina Desenvolvimento para Web 5 do curso de SI, incluindo a criação de

novas funcionalidades, a correção de bugs e atualizações nas bibliotecas do projeto.

Contudo, ainda em 2023, outras melhorias foram realizadas, principalmente visando a

otimização das telas do sistema. Foram aplicadas técnicas de Experiência do usuário, do inglês

User Experience (UX) design, com foco na estética e funcionalidade, reorganizando e tornando

a usabilidade mais agradável. Muitas alterações foram feitas com base em questionários reali-

zados com os usuários do sistema. Após essas alterações, o resultado de um novo questionário

mostrou que houve uma grande melhoria na usabilidade do sistema (LIMA, 2023).

O desenvolvimento do SGTCC continua em andamento. Atualmente está em curso um

projeto para a atualização do Framework Rails e de outras dependências do sistema, além

de uma adequação no código para garantir a continuidade do sistema, corrigindo possíveis

vulnerabilidades e assegurando que possa continuar a evoluir (LUZ, 2024).

As áreas implementadas atualmente são as seguintes:

15

• Área pública: Pode ser acessada por qualquer pessoa, essa área conta com informa-

ções gerais sobre o TCC e as atividades de TCC do período corrente.

• Área do membro externo: Disponível para instituições externas e convidados, essa

área conta com acesso às bancas e documentos, relacionados aos trabalhos aos quais

o membro externo faz parte.

• Área acadêmica: Tendo acesso às informações sobre bancas e acesso aos documen-

tos e atividades dos discentes.

• Área do orientador: Área onde o docente pode monitorar e registrar todas as ativida-

des relacionadas aos trabalhos que o mesmo orienta, além de informações sobre as

bancas que irá participar.

• Área do Professor de TCC 1: O professor responsável pela disciplina de TCC 1, nesta

área, verificar os prazos das entregas, agendar bancas de proposta e projeto, acompa-

nhar as entregas feitas e ter acessos as informações de todos os alunos matriculados

na disciplina.

• Área do Professor responsável pelo TCC: Responsável por gerenciar todos os proces-

sos relacionados as disciplinas de TCC 1 e TCC 2, podendo fazer cadastro de todos os

outros tipos de usuários, definindo calendários, cadastrando atividades e agendando

bancas de todos os tipos.

Estando em constante evolução desde seu início, o SGTCC recebeu diversas mudanças

para tentar cumprir melhor seu objetivo: gerenciar os trabalhos de TCC. Uma parte dessa evolu-

ção foi a implementação de novas funcionalidades, buscando atender melhor às necessidades

dos usuários. Dentre os problemas ainda existentes no SGTCC, uma lacuna muito aparente

para os usuários é a falta de avisos e lembretes sobre os prazos e sobre afazeres necessários

para o processo de TCC.

Deste ponto de vista e pela tamanha importância do cumprimento de prazos no pro-

cesso de TCC, surge a necessidade de informar todos os envolvidos quanto aos prazos, avisos

importantes, bem como o tempo restante para a conclusão do TCC. Com o objetivo de suprir

essa necessidade e minimizar os prejuízos causados pela perda de prazos e pela ausência de

assinatura de documentos, faz-se necessário o planejamento, a escolha e a implementação de

estratégias de notificação.

3.2 Levantamento dos requisitos

O levantamento de requisitos foi conduzido a partir de duas abordagens complemen-

tares. Primeiramente, realizou-se a análise dos fluxos operacionais já existentes no sistema

16

SGTCC, com o objetivo de mapear as etapas do processo, identificar pontos críticos e compre-

ender a sequência de ações atualmente exigidas de discentes, docentes e responsáveis pelas

bancas. Os resultados provenientes da análise do fluxo interno do TCC foram organizados na

Tabela 1, servindo como base para a definição das funcionalidades e melhorias propostas.

Tabela 1 – Levantamento de requisitos a partir da análise de fluxos do SGTCC.
Requisito Descrição
Cadastro e alteração de
calendário

Notificar todos os usuários cadastrados no calendário atual após um
período determinado da criação ou alteração do mesmo.

Assinatura de
documentos pendentes

Enviar aviso imediato a todos que deveriam assinar um documento
específico e ainda não realizaram a assinatura.

Confirmação de
assinatura de
documentos

Notificar imediatamente os demais envolvidos quando um dos
participantes realizar uma assinatura.

Prazos de envio de pro-
posta/projeto/monografia

Enviar lembretes sobre prazos de envio para orientadores e alunos, com
possibilidade de definir quantidade e intervalo dos avisos, diferenciando
perfis de usuários.

Envio de proposta/proje-
to/monografia

Avisar imediatamente orientadores, professores responsáveis e demais
envolvidos sobre o envio desses documentos.

Agendamento e alteração
de banca (avaliadores)

Enviar notificação aos avaliadores após um tempo definido da última
alteração no agendamento, solicitando confirmação de disponibilidade.

Agendamento e alteração
de banca (aluno e curso)

Notificar o aluno que irá defender e todos do curso após confirmação
dos avaliadores, considerando a última alteração.

Registros dos
apontamentos da banca

Avisar imediatamente o acadêmico quando houver registros de
apontamentos pela banca.

Avisos sobre a evolução
do tempo do TCC

Notificar o aluno ao longo do desenvolvimento do TCC, seguindo uma
linha do tempo pré-definida.

Ciência na reunião Notificar o acadêmico para ciência dos registros feitos pelo orientador
em reunião, solicitando concordância.

Após a identificação de requisitos a partir da análise de fluxos do SGTCC, aplicou-se

um formulário eletrônico elaborado no Google Forms 1, intitulado “Prioridade e Preferência de

Notificações – Sistema SGTCC”. O instrumento utilizado para a coleta de informações foi direci-

onado aos estudantes e professores da UTFPR – Campus Guarapuava envolvidos no processo

de TCC, a fim de compreender quais eventos do sistema demandam notificações, qual a priori-

dade de cada um deles e por quais meios de comunicação os usuários preferem ser informados.

Essas informações são essenciais para o desenvolvimento de um sistema de notificações efi-

caz, personalizado e alinhado às necessidades reais dos seus diferentes tipos de usuários.

A seguir, apresentam-se de forma resumida as principais questões e suas respectivas

finalidades:

1 Disponível em https://forms.gle/5eHwmktweuRHNt1i8

https://forms.gle/5eHwmktweuRHNt1i8

17

• Identificação do papel do usuário: busca determinar se quem está respondendo

é acadêmico, professor ou outro perfil. Essa informação é essencial para compreen-

der as diferenças de necessidades entre os grupos e personalizar as notificações de

acordo com cada função.

• Perfis utilizados no sistema: permite identificar quais papéis o usuário desempenha

(avaliador, orientador, coordenador etc.), contribuindo para entender a sobreposição

de funções e os diferentes contextos de uso do sistema.

• Classificação de eventos pelo método MoSCoW: solicita que os participantes clas-

sifiquem os eventos conforme sua prioridade (Must, Should, Could, Won’t Have). Essa

classificação auxilia na priorização dos requisitos e na definição do que deve ser im-

plementado inicialmente.

• Preferência de meios de notificação: tem como objetivo levantar os canais preferi-

dos de comunicação (e-mail, WhatsApp, Discord, notificações internas, entre outros),

orientando o desenvolvimento de integrações e funcionalidades adequadas às expec-

tativas dos usuários.

• Sugestões de novas notificações: oferece espaço para que os participantes pro-

ponham notificações adicionais, classificando-as segundo o método MoSCoW. Essa

questão contribui para a descoberta de novos requisitos funcionais.

• Comentários gerais e sugestões: permite coletar feedbacks qualitativos sobre o sis-

tema e suas funcionalidades, fornecendo subsídios para melhorias na interface, na

frequência de notificações e na experiência do usuário.

3.3 Análise de Requisitos

Os resultados obtidos por meio do formulário indicaram uma maior participação dos

docentes no processo de levantamento e priorização dos requisitos do sistema, correspondendo

a 85% das respostas (12 participantes). Esse dado sugere um elevado nível de interesse e

envolvimento por parte dos professores, possivelmente em razão de sua atuação direta nas

etapas de orientação, avaliação e validação dos trabalhos de conclusão de curso, nas quais as

notificações exerciam papel fundamental para o acompanhamento das atividades.

Em contrapartida, observou-se um baixo engajamento dos discentes, com apenas 2

respostas, representando 15% do total. Essa diferença pode ter indicado uma menor percepção

da importância do sistema de notificações por parte dos estudantes, ou ainda dificuldades de

acesso e familiaridade com o processo de levantamento de requisitos.

Com base nos resultados do formulário, observou-se que o e-mail foi apontado como o

meio de comunicação preferencial para o recebimento de notificações, por ser considerado um

18

canal oficial, confiável e mais adequado para comunicações formais. Além disso, identificou-se

interesse na implementação de notificações internas no próprio sistema, bem como no uso do

WhatsApp como meio secundário de aviso, conforme ilustrado na Figura 2. Também se verifi-

caram diferenças nas preferências entre discentes e docentes, tanto em relação à frequência

quanto aos tipos de notificações desejados, refletindo as distintas necessidades e rotinas de

cada grupo de usuários.

Figura 2 – Preferência de canal de notificação dos usuários.

Fonte: Autoria própria..

Outro ponto abordado no formulário, além do levantamento de requisitos, foi a classifi-

cação dos requisitos com base no Método MoSCoW, onde cada usuário classificou todos os

requisitos por importância do seu ponto de vista, reunindo essas respostas na Tabela 2 que

apresenta os requisitos classificados segundo a metodologia MoSCoW, a qual define as priori-

dades de implementação em um sistema de notificações para o processo de TCC. Observa-se

que a maioria dos requisitos que são classificadas como Must representam, do ponto de vista

dos usuários, aspectos essenciais para o funcionamento do sistema. Esses requisitos repre-

sentam o núcleo (core) da aplicação, voltado à automação das comunicações e ao controle

de prazos e documentos — funcionalidades indispensáveis para garantir o andamento ade-

quado das etapas do TCC. Além disso, nota-se que os requisitos classificados como Should

e Could correspondem a funcionalidades complementares que, embora não sejam essenciais

para o funcionamento inicial do sistema, agregam valor à experiência dos usuários e à eficiência

do processo. Essas funcionalidades podem ser incorporadas em versões futuras, ampliando o

escopo do sistema de notificações para contemplar aspectos como acompanhamento do pro-

gresso do TCC e maior transparência na comunicação entre os participantes. Por fim, o único

requisito classificado como Won’t refere-se a uma funcionalidade considerada de baixa priori-

dade no momento, podendo ser reavaliada conforme a evolução das necessidades institucionais

e a maturidade do sistema.

19

Requisito Descrição detalhada
Classificação

MoSCoW
Cadastro e alteração de
calendário

Todos cadastrados no calendário atual devem
ser notificados após um tempo da criação ou
alteração do calendário.

Must

Assinatura de
documentos pendentes

Enviar aviso imediato a todos que deveriam
assinar determinado documento e ainda não
assinaram.

Must

Prazos de envio de pro-
posta/projeto/monografia

Notificar orientadores e alunos sobre os prazos
de envio. Definir número de lembretes e
intervalos, diferenciando os tipos de usuários.

Must

Envio de proposta/proje-
to/monografia

Avisar orientador, professor de TCC 1 (quando
for proposta ou projeto) e professor responsável.

Must

Agendamento e alteração
de banca (avaliadores)

Notificar membros avaliadores após algum tempo
da última alteração no agendamento, pedindo
confirmação de disponibilidade para a data
marcada.

Must

Agendamento e alteração
de banca (aluno e curso)

Notificar o aluno e todos do curso após
confirmação dos avaliadores, considerando a
última alteração.

Should

Registros dos
apontamentos da banca

Enviar notificação imediata ao acadêmico
quando houver registro de apontamentos pela
banca.

Should

Avisos sobre a evolução
do tempo do TCC

Notificar o aluno ao longo da linha do tempo do
TCC, de acordo com intervalos definidos.

Could

Ciência na reunião Notificação enviada ao acadêmico para ciência
dos registros feitos pelo orientador, indicando
concordância com as informações registradas na
reunião.

Could

Termo de Desistência de
Orientação de TCC pelo
Professor Orientador

Notificação enviada ao Coordenador do TCC
quando um professor orientador iniciar um
processo de desistência de orientação, para que
o coordenador possa analisar e deferir ou não o
requerimento.

Could

Termo de Substituição de
Orientação de TCC

Notificação enviada ao Coordenador do TCC
quando o orientador e o aluno orientado tiverem
assinado o Termo para a Substituição de
Orientação do TCC, para que o coordenador
possa analisar e deferir ou não o requerimento.

Could

Termo de Solicitação de
Extensão do Prazo de
TCC

Notificar o Coordenador do TCC quando tanto o
orientador como o aluno orientado assinarem o
termo para extensão de prazo do TCC, para que
o coordenador possa analisar e deferir ou não o
requerimento.

Could

Confirmação de
assinatura de documentos

Notificar imediatamente os demais envolvidos
quando alguém realizar uma assinatura.

Won’t

Tabela 2 – Requisitos de notificação do sistema com cores de classificação MoSCoW.

Fonte: Autoria própria.

20

3.3.1 Histórias de usuário

As histórias de usuário a seguir foram elaboradas com base nos requisitos de notificação

identificados no levantamento. Elas descrevem as necessidades do ponto de vista dos diferentes

tipos de usuários do SGTCC (discentes, docentes e coordenadores).

Feature: Cadastro e alteração de calendário (Must)

Como usuário (discente, docente ou coordenador), quero ser notificado quando houver

uma nova inserção ou modificação no calendário acadêmico do TCC para acompanhar

alterações importantes nos prazos e me organizar de forma adequada.

Feature: Assinatura de documentos pendentes (Must)

Como usuário que precisa assinar documentos no sistema, quero receber uma notifica-

ção imediata via e-mail para ser lembrado da pendência e evitar atrasos na tramitação

dos documentos.

Feature: Prazos de envio de proposta/projeto/monografia (Must)

Como aluno ou orientador, quero receber lembretes sobre os prazos de envio da pro-

posta, projeto ou monografia para garantir o cumprimento dos prazos definidos pela co-

ordenação.

Feature: Envio de proposta/projeto/monografia (Must)

Como orientador ou docente responsável, quero ser notificado quando um aluno subme-

ter sua proposta, projeto ou monografia para acompanhar a evolução dos entregáveis e

validar o envio dentro do prazo.

Feature: Agendamento e alteração de banca (avaliadores) (Must)

Como membro avaliador de uma banca, quero ser notificado após alterações no agen-

damento para confirmar minha disponibilidade e evitar conflitos de agenda.

Feature: Agendamento e alteração de banca (aluno) (Should)

Como discente, quero ser notificado após a confirmação da banca pelos avaliadores

para me preparar com antecedência.

21

Feature: Registros dos apontamentos da banca (Should)

Como aluno avaliado, quero ser notificado quando os avaliadores registrarem aponta-

mentos para ter ciência imediata das observações e iniciar os ajustes necessários.

Feature: Avisos sobre a evolução do tempo do TCC (Could)

Como aluno em processo de TCC, quero receber notificações periódicas sobre a evo-

lução do tempo do meu TCC para manter o acompanhamento do cronograma e evitar

atrasos.

Feature: Ciência na reunião (Could)

Como discente participante de reuniões com o orientador, quero ser notificado para con-

firmar ciência dos registros feitos pelo orientador para validar as informações discutidas

e manter um histórico formalizado das reuniões.

Feature: Termo de Desistência de Orientação de TCC pelo Professor Orientador

(Could)

Como coordenado do TCC, quero ser notificado um professor orientador tenha assinado

o Termo de Desistência de Orientação para poder analisar e deferir ou não o requeri-

mento e então tomar as ações necessárias.

Feature: Termo de Substituição de Orientação de TCC (Could)

Como coordenado do TCC, quero ser notificado tanto o professor orientador quanto o

aluno orientado tenham assinado o Termo de Substituição de Orientação para poder

analisar e deferir ou não o requerimento e então tomar as ações necessárias.

Feature: Termo de Solicitação de Extensão do Prazo de TCC (Could)

Como coordenado do TCC, quero ser notificado tanto o professor orientador quanto o

aluno orientado tenham assinado o Termo de Extensão de Prazo de TCC para poder

analisar e deferir ou não o requerimento e então tomar as ações necessárias.

Feature: Confirmação de assinatura de documentos (Won’t)

Como participante envolvido em um processo de assinatura, quero ser notificado quando

outro membro realizar uma assinatura para acompanhar o progresso do fluxo de docu-

mentos em tempo real.

22

Figura 3 – Botão de confirmação de bancas para o professor responsável na página de bancas de
defesa.

Fonte: Autoria própria..

3.3.2 Protótipos de Telas

Os protótipos das telas foram iniciados, com as adaptações necessárias nas interfaces

já existentes no TCC, para que o sistema possa suportar novas interações.

A Figura 3 apresenta a interface destinada ao responsável pelas bancas, cujo objetivo

principal é a gestão e confirmação das defesas de TCC. Nessa tela, são exibidas informações

essenciais de cada banca, como discente, orientador, local, data e horário, além de um indica-

dor visual de status temporal da defesa. O elemento central desta funcionalidade é o botão de

confirmação, que permite ao responsável validar oficialmente a realização da banca, alterando

o estado do registro para "Confirmada". Esse processo garante maior controle institucional,

prevenindo inconsistências no agendamento e assegurando que apenas bancas devidamente

homologadas avancem no fluxo do sistema, como no envio de notificações e habilitação das

etapas subsequentes. Dessa forma, a funcionalidade contribui para a padronização e confiabi-

lidade do gerenciamento das bancas de TCC.

Outra tela a ser desenhada foi uma interface onde o responsável pelo TCC pode geren-

ciar as regras de cada evento notificável, podendo ser acessada pelo menu lateral utilizando a

opção configurações de notificações, conectado como um usuário com permissão de professor

responsável. A Figura 4 apresenta um recorte dessa interface que apresenta o contexto onde

o professor responsável pode escolher quais notificações estão habilitadas. Já a Figura 5 apre-

senta o restante da mesma tela, onde é possível modificar a frequência, o intervalo entre envios,

o tempo de espera entre o acontecimento do evento no sistema e o envio, além de poder ativar

ou desativar notificações de algum evento. Essas configurações permitem que o responsável

mantenha as notificações úteis e não invasivas, mantendo a funcionalidade útil para todos os

usuários do SGTCC.

23

Figura 4 – Tela de configuração de notificações ativas pelo professor responsável.

Fonte: Autoria própria.

Figura 5 – Tela de configuração de regras de notificação pelo professor responsável.

Fonte: Autoria própria.

24

4 ESTRATÉGIAS DE NOTIFICAÇÃO DO SGTCC

A implementação foi organizada a partir do planejamento inicial, que contemplou a for-

mulação dos modelos de notificação, a definição dos modelos de e-mail e a definição do fluxo

de notificações.

O objetivo deste capítulo é apresentar de forma clara o processo de construção da solu-

ção, evidenciando as decisões técnicas, os recursos empregados e a maneira como as notifica-

ções foram estruturadas no sistema. A seguir, a seção de definição detalha os elementos que

serviram de base para a implementação.

4.1 Definição

A partir do levantamento de requisitos apresentado na seção 3.2, foi possível estruturar

um conjunto de notificações alinhado às demandas reais dos usuários e às particularidades do

fluxo de trabalho do SGTCC. Essa etapa de definição teve como foco transformar os requisitos

funcionais em regras práticas e automatizáveis, descrevendo para cada evento: o gatilho (trig-

ger), os destinatários, o momento do envio e a estratégia de reenvio ou cancelamento. Cada

notificação foi formalizada em um formato padronizado, conforme o modelo descrito a seguir:

Estrutura de definição de notificação

Evento: identifica a ação que dispara a notificação (ex: criação, atualização ou confirma-

ção de dados);

Alvo: define os usuários que receberão a mensagem, podendo incluir acadêmicos, ori-

entadores, avaliadores, coordenadores ou membros externos à instituição;

Momento do envio: determina o intervalo entre o evento e o envio da notificação, permi-

tindo ajustes para evitar redundâncias;

Reenvio: indica se há necessidade de lembrete ou tentativa posterior;

Observações: campo destinado a exceções ou regras adicionais de comportamento.

A adoção desse formato padronizado permitiu que as notificações fossem registradas de

maneira uniforme e facilmente mantidas por meio de arquivos de configuração. Durante a etapa

de definição, também foram especificados os modelos de e-mail associados a cada notificação,

os gatilhos do sistema (hooks) que disparam os eventos e o fluxo lógico de envio, detalhados

nas subseções seguintes.

Essas definições asseguraram que a implementação seguisse um modelo previsível,

reduzindo inconsistências e facilitando futuras expansões — como a integração de novos canais

de comunicação (ex: notificações internas, WhatsApp ou SMS).

25

4.1.1 Modelos de notificação

As regras de notificação definem o comportamento operacional do sistema, descrevendo

quando, para quem e como cada mensagem deve ser enviada. Elas foram formuladas com base

na análise dos fluxos de trabalho do SGTCC e nas respostas do questionário aplicado aos usuá-

rios, apresentados na seção 3.2. A seguir, são apresentadas todas as regras implementadas,

acompanhadas de uma breve explicação sobre a motivação e o comportamento de cada uma.

Cadastro e alteração de calendário

Evento: Criação ou atualização do calendário acadêmico;

Alvo: Todos os usuários cadastrados no calendário atual;

Momento do envio: 1h após a última alteração;

Reenvio: Não é necessário;

Observações: Professor responsável pode desativar; evitar notificações desnecessárias.

Essa notificação é essencial para garantir que alunos e docentes estejam sempre cien-

tes de mudanças nos prazos e eventos do calendário acadêmico. O envio é programado com

um pequeno atraso para evitar disparos múltiplos durante edições consecutivas do calendário.

Assinatura de documentos pendentes

Evento: Documento não assinado a mais de 24h;

Alvo: Quem estiver com assinatura pendente no documento;

Momento do envio: Após 24h da criação do documento;

Reenvio: A cada 24h até a assinatura ser realiza ou até 30x;

Observações: Documentos que geram essa notificação (TCO. TEP, TCAI, TSO).

Essa notificação tem como objetivo acelerar o processo de validação documental, evi-

tando atrasos na tramitação dos termos obrigatórios. O reenvio diário foi projetado para reforçar

a necessidade da assinatura até que o fluxo esteja completo.

Assinatura de Ata de Defesa

Evento: Documento não assinado após 2:30 h começa notificar;

Alvo: Quem estiver com assinatura pendente no documento;

Momento do envio: Após duas horas da defesa;

Reenvio: A cada duas horas até assinar ou até a data limite para assinatura. Depois a

cada dia até 30x;

Observações: Sem observações.

26

A Ata de Defesa é um documento sensível e com prazos rígidos. Por isso, a notificação

é configurada para ter uma frequência de envio mais alta nas primeiras horas após a banca,

reduzindo o risco de atrasos e garantindo o registro formal imediato do resultado.

Prazos de envio para o aluno

Evento: Proximidade de prazos de entrega;

Alvo: Discentes que não realizaram o envio;

Momento do envio: 7, 3 e 1 dia antes do prazo. No dia também;

Reenvio: Reenvio por prazo pré definido;

Observações: Sem observações.

Essa notificação atua como lembrete preventivo para os alunos, reforçando o cumpri-

mento dos prazos de entrega de cada atividade. O envio escalonado (7, 3 e 1 dia antes) foi

definido com base em boas práticas de gestão de prazos em ambientes acadêmicos.

Prazos de envio para o orientador

Evento: Proximidade de prazos de entrega;

Alvo: Docentes com orientações no semestre corrente;

Momento do envio: 7, 3 e 1 dia antes do prazo. No dia também;

Reenvio: Reenvio por prazo pré definido;

Observações: Cuidar caso o orientador tenha mais de um orientado no mesmo semes-

tre.

Similar à notificação anterior, essa regra visa manter o orientador ciente do progresso de

seus orientandos, permitindo o acompanhamento proativo. A diferenciação por perfil de usuário

evita redundâncias e melhora a clareza das mensagens.

Envio de documento

Evento: Submissão do envio feita no sistema;

Alvo: Orientador do discente que realizou o envio, Professor Responsável do TCC e

Professor de TCC1 (quando entrega de TCC1);

Momento do envio: Imediato;

Reenvio: Não é necessário;

Observações: Sem observações.

27

Trata-se de uma notificação disparada automaticamente logo após o envio de um docu-

mento. Sua função é manter os professores informados sobre novas submissões, agilizando o

processo de avaliação e validação.

Atualização de envio de documento

Evento: Submissão do envio feita no sistema;

Alvo: Orientador do discente que realizou o envio, Professor Responsável do TCC e

Professor de TCC1 (quando entrega de TCC1);

Momento do envio: Imediato;

Reenvio: Não é necessário;

Observações: Sem observações.

Complementar à regra anterior, essa notificação informa sobre alterações em documen-

tos já enviados. Ela garante rastreabilidade e comunicação transparente entre aluno e equipe

docente, evitando confusões com versões antigas.

Agendamento e alteração de banca (avaliadores)

Evento: Criação ou alteração de agendamento de banca;

Alvo: Docentes e membros externos listados como avaliadores na banca;

Momento do envio: 1h após a criação ou alteração da banca;

Reenvio: Até 2 reenvios, intervalo de 48h;

Observações: Cuidar para não criar novos eventos quando houver alteração antes do

envio.

Essa notificação é fundamental para o gerenciamento de bancas avaliadoras, garan-

tindo que todos os participantes recebam confirmação formal do agendamento, garantindo que

não haja uma banca em que um avaliador não tenha ciência desse compromisso. O atraso

intencional de uma hora evita duplicidades caso o professor realize ajustes sucessivos.

Confirmação do agendamento e/ou alteração de banca (aluno e avaliadores)

Evento: Após confirmação dos avaliadores;

Alvo: Aluno defensor da banca e docentes e membros externos listados como avaliado-

res na banca;

Momento do envio: Imediato;

Reenvio: 24h antes da banca;

Observações: Confirmação das bancas pelo Professor responsável.

28

Essa regra fecha o ciclo de comunicação da banca, garantindo que todos os envolvidos

estejam cientes da confirmação final. O reenvio programado 24 horas antes funciona como

lembrete de compromisso e reforça a organização do evento.

Registros dos apontamentos da banca

Evento: Após a defesa se houver inclusão de apontamentos pela banca;

Alvo: Aluno defensor da banca;

Momento do envio: Imediato;

Reenvio: Não é necessário;

Observações: Sem observações.

Essa notificação foi projetada para promover transparência no processo avaliativo, infor-

mando ao aluno que os apontamentos realizados pela banca já estão disponíveis no sistema

para consulta.

Ciência na reunião

Evento: Registro de reunião pelo orientador;

Alvo: Aluno orientado;

Momento do envio: Imediato;

Reenvio: A cada dois dias até dar a ciência.;

Observações: Sem observações.

Tem função de assegurar que o aluno confirme o recebimento e leitura das anotações de

reuniões. O reenvio periódico serve como lembrete até que a ciência seja registrada no sistema.

Submissão de termos

Evento: Submissão de termo no sistema;

Alvo: Professor responsável;

Momento do envio: Imediato;

Reenvio: Não é necessário.;

Observações: Termos que geram essa notificação (TDO, TSO, TEP).

Essa notificação reforça a rastreabilidade documental no sistema, garantindo que o pro-

fessor responsável seja imediatamente informado sobre novas submissões de termos instituci-

onais que demandam a análise e validação formal.

29

4.1.2 Templates de E-mail

Os modelos de e-mail foram elaborados para padronizar a comunicação do sistema com

os usuários, garantindo clareza e consistência das informações enviadas. A estrutura básica dos

e-mails segue o padrão:

Modelo de e-mail

Assunto: identifica de forma direta o tipo de notificação;

Saudação: personalizada com o nome do destinatário;

Corpo da mensagem: contém o conteúdo específico da notificação;

Rodapé: Atenciosamente,

Sistema de Gerenciamento de TCC (SGTCC)

Universidade Tecnológica Federal do Paraná - Câmpus Guarapuava.

A seguir, são apresentados os modelos para cada tipo de notificação.

Cadastro e alteração de calendário

Assunto: [SGTCC] Atualização no calendário acadêmico de TCC1/2 ANO/PERÍODO

Corpo da mensagem:

Um novo calendário acadêmico foi cadastrado/alterado em <DATA>.

Por favor, consulte o sistema para verificar os prazos atualizados.

Assinatura de documentos pendentes

Assunto: [SGTCC] Assinatura pendente no documento

Corpo da mensagem:

O documento <NOME_DO_DOCUMENTO>, criado em <DATA>, ainda não foi assinado.

Sua assinatura é necessária para dar continuidade ao processo.

Assinatura pendente de Ata de Defesa

Assunto: [SGTCC] Assinatura pendente da Ata de Defesa

Corpo da mensagem:

A Ata de Defesa referente ao TCC <TITULO_DO_TCC> precisa ser assinada com urgên-

cia.

O prazo de assinatura é reduzido devido à relevância do documento.

30

Prazos de envio(acadêmico)

Assunto: [SGTCC] Lembrete de prazo para envio de <TITULO_DA_ATIVIDADE>

Corpo da mensagem:

O prazo final para envio de <TITULO_DA_ATIVIDADE> é <DATA>.

Faltam <X> dias para o encerramento. Não deixe para a última hora!

Prazos de envio(orientador)

Assunto: [SGTCC] Lembrete de prazo para envio de atividades de seus orientandos

Corpo da mensagem:

O prazo final para envio de <TITULO_DA_ATIVIDADE> de seus orientandos é <DATA>.

Acompanhe o progresso no sistema para evitar atrasos.

Envio de atividade

Assunto: [SGTCC] Novo envio de <TITULO_DA_ATIVIDADE>

Corpo da mensagem:

O acadêmico <NOME_DO_ACADÊMICO> enviou sua <TIPO_DOCUMENTO> em

<DATA>.

O documento já está disponível para avaliação.

Atualização de envio de atividade

Assunto: [SGTCC] Atualização no envio de <TITULO_DA_ATIVIDADE>

Corpo da mensagem:

O acadêmico <NOME_DO_ACADÊMICO> atualizou seu envio de <TITULO_DA_-

ATIVIDADE>. A nova versão está disponível no sistema.

Agendamento e alteração de banca (avaliadores)

Assunto: [SGTCC] Agendamento de banca para avaliação

Corpo da mensagem:

Você foi designado como avaliador na banca do aluno <NOME_DO_ACADÊMICO>,com

TCC intitulado <TITULO_DO_TCC>. Data: <DATA_BANCA>

Horário: <HORARIO>

Local: <LOCAL>

Por favor, confirme sua disponibilidade.

31

Agendamento e alteração de banca (aluno)

Assunto: [SGTCC] Agendamento de banca confirmado

Corpo da mensagem:

Sua banca de defesa foi agendada com os seguintes detalhes: Data: <DATA_BANCA>

Horário: <HORARIO>

Local: <LOCAL>

Confira os detalhes no sistema.

Registros dos apontamentos da banca

Assunto: [SGTCC] Apontamentos da banca disponíveis

Corpo da mensagem:

Os apontamentos registrados pela banca do seu TCC já estão disponíveis no sistema.

Acesse sua área para consultá-los.

Ciência na reunião

Assunto: [SGTCC] Registro de reunião disponível

Corpo da mensagem:

O orientador <NOME_ORIENTADOR> registrou uma reunião no sistema.

Por favor, confirme a ciência das informações acessando sua área no SGTCC.

Submissão de Termos ao Professor Responável

Assunto: [SGTCC] Registro de TITULO_DO_TERMO

Corpo da mensagem:

Foi registrado um <TITULO_DO_TERMO> relacionado ao TCC de <NOME_DO_ALUNO>,

intitulado <TITULO_DO_TCC>.

Consulte o sistema para verificar os detalhes.

4.1.3 Fluxo de Envio

Os diagramas de sequência apresentados nas Figuras 6 e 7 ilustram o fluxo de cria-

ção de uma notificação no SGTCC, detalhando as interações entre os componentes respon-

sáveis pela construção, armazenamento e disparo da notificação. A Figura 6 descreve o pro-

cesso de criação e armazenamento da notificação que se inicia quando ocorre um evento in-

terno, como, por exemplo, a criação de uma banca de defesa. Esse evento é encaminhado

32

ao módulo de hook correspondente, que atua como um ponto de extensão responsável por

reagir automaticamente às alterações relevantes no sistema. Ao receber o evento, o hook

aciona o componente CreateJob, que executa, de maneira assíncrona, uma requisição ao

SchedulerService, serviço responsável por estruturar os dados da notificação, aplicar re-

gras de negócio e determinar os metadados necessários para a etapa posterior de envio. Após

essa etapa, o SchedulerService salva a notificação no banco de dados (SQLite), onde

permanece armazenada até o momento de processamento pelos serviços responsáveis pelo

envio.

A Figura 7 descreve o fluxo completo de envio das notificações previamente criadas e ar-

mazenadas. Esse processo é assíncrono e ocorre no container workers, separado da aplicação

web, envolvendo componentes que operam de forma periódica por meio de jobs agendados.

O fluxo tem início quando o ActiveJob aciona periodicamente o SchedulerPollerJob,

que executa consultas no banco de dados a fim de localizar notificações pendentes e elegí-

veis para envio. Após recuperar os registros, o SchedulerPollerJob envia essas infor-

mações ao ProcessorService, o qual aplica a lógica central do sistema de notificações,

incluindo validações de prazos, regras específicas do fluxo acadêmico e também a verifica-

ção de condições que possam impedir o envio. Para isso, o ProcessorService consulta o

StopChecker, que determina se existem motivos para cancelar o envio de alguma notifica-

ção. Caso o envio seja permitido, o ProcessorService aciona o DispatchJob, respon-

sável por criar uma nova tarefa assíncrona para realizar o envio propriamente dito. Esse job é

então encaminhado ao componente Dispatcher, que o direciona ao mensageiro correto a

partir do tipo da notificação (por e-mail, no sistema, etc.). Em seguida, o Dispatcher chama

o NotificationMailer, componente encarregado de gerar e enviar o e-mail ao destina-

tário. Finalmente, o NotificationMailer envia a mensagem ao usuário, completando o

ciclo de notificação. Esse fluxo demonstra como o sistema separa as etapas de criação e envio,

permitindo que não haja sobrecarga de responsabilidades em poucos serviços.

SGTCC Hook CreateJob Scheduler BD

Evento dispara Gera solicitação Cria notificação Salva no BD

Legenda:
Hook = Hooks::ExaminationBoard

CreateJob = Notifications::CreateJob
Scheduler = Notifications::SchedulerService

BD = Banco de Dados SQLite para notificações e jobs
Figura 6 – Diagrama de sequência — Processo de criação de notificação

33

ActiveJob Poller Processor StopCheck

DispatchJobDispatcherMailerUsuário

Periodicamente chama Busca notificações Consulta condições de parada

Enfileira envio

Inicia envioEnvia notificaçãoCria o e-mail Legenda:

Poller = SchedulerPollerJob
Processor = Notifications::ProcessorService

StopChk = Notifications::StopChecker
DispatchJob = Notifications::DispatchJob

Dispatcher = Notifications::Dispatcher
Mailer = NotificationMailer

Figura 7 – Diagrama de sequência — Processo de envio de notificações

4.2 Implementação das funcionalidades

O processo de implementação das funcionalidades iniciou-se após a conclusão do pla-

nejamento arquitetural descrito na seção anterior, tendo como objetivo principal integrar o sis-

tema de notificações ao SGTCC de forma modular, assíncrona e independente do fluxo princi-

pal da aplicação. Para alcançar esse propósito, foi necessário adaptar a estrutura existente do

sistema, incorporando novos componentes responsáveis pela criação, agendamento, envio e

controle das notificações.

A implementação foi conduzida de maneira incremental, partindo da configuração do

ambiente de desenvolvimento e do mecanismo de filas, seguida pela modelagem das classes

de notificação, pela definição dos serviços responsáveis pelo processamento assíncrono e pela

integração com os eventos internos da aplicação. Cada etapa foi validada por meio de testes

automatizados, garantindo a confiabilidade e a consistência do sistema diante de diferentes

cenários operacionais.

Nos tópicos a seguir, são detalhadas as etapas do processo de implementação, desde

a configuração do ambiente e das filas de execução até a arquitetura de serviços, a integração

com os eventos do sistema e a estratégia de testes utilizada para assegurar o correto funciona-

mento das funcionalidades desenvolvidas.

34

4.2.1 Configuração do ambiente de desenvolvimento

Apesar do SGTCC já ser uma aplicação em pleno funcionamento, foram necessárias

alterações estruturais no ambiente de desenvolvimento para integrar o sistema de notificações

de forma assíncrona, utilizando o framework Active Job1 do Ruby on Rails em conjunto

com o adaptador Solid Queue. Essas modificações visaram garantir isolamento, paralelismo

e tolerância a falhas durante o processamento das notificações. As modificações envolveram

ajustes na configuração do Docker, na definição de dependências Ruby via Gemfile, e na criação

de arquivos auxiliares para orquestrar o enfileiramento de tarefas assíncronas.

No Docker, o serviço da aplicação foi configurado para incluir o processo de enfileira-

mento do Solid Queue em execução paralela ao servidor web, garantindo que os jobs pudessem

ser processados em segundo plano. O arquivo docker-compose.yml passou a incluir um

serviço adicional responsável pelo processamento das filas, conforme o exemplo simplificado a

seguir:

Listing 4.1 – Trecho adicionado ao arquivo docker-compose.yml com serviço de filas Solid Queue.

1 workers :

2 <<: *app

3 command : >

4 bash −c "

5 bundle exec b in / jobs

6 "

7 environment :

8 RAILS_ENV : development

Essa separação permite que o serviço workers seja reiniciado ou escalado independente-

mente do servidor web, prática comum em arquiteturas que utilizam filas distribuídas. O serviço

workers é responsável por executar o comando bin/jobs, que inicializa o processo de mo-

nitoramento e execução das filas configuradas pelo Solid Queue. Esse comando é mantido em

execução contínua dentro do contêiner, funcionando de forma independente do servidor web,

mas conectado ao mesmo banco de filas.

No arquivo Gemfile, foram adicionadas dependências específicas para suportar o pro-

cessamento assíncrono (gem solid_queue) e a integração com o SQLite(gem sqlite3). O motivo

da escolha da gem solid_queue está detalhado em subseção 4.2.3. Essa decisão simplifi-

cou a infraestrutura, permitindo que todo o processamento ocorresse no próprio banco SQLite

configurado para a fila.

1 Disponível em https://guides.rubyonrails.org/active_job_basics.html. Acessado em 05 de novembro de
2025.

https://guides.rubyonrails.org/active_job_basics.html

35

Para definir a estrutura e o comportamento das filas, foi criado o arquivo config/-

queue.yml, no qual são especificadas as filas disponíveis, suas prioridades e a quantidade

de workers alocados para cada tipo de tarefa:

Listing 4.2 – Configuração dos dispatchers (Despachantes) e workers (Trabalhadores) no ar-
quivo config/queue.yml.

1 d e f a u l t : &d e f a u l t

2 d ispa tchers :

3 − p o l l i n g _ i n t e r v a l : 1

4 batch_s ize : 500

5 workers :

6 − queues : " * "

7 threads : 3

8 processes : 1

9 p o l l i n g _ i n t e r v a l : 0.1

Nesta configuração, o Solid Queue utiliza um único dispatcher com intervalo de var-

redura de um segundo e tamanho máximo de lote (batch size) de 500 tarefas por ciclo.

Esse componente é responsável por identificar novas tarefas enfileiradas no banco de dados

e distribuí-las para os workers. Os workers são configurados para processar todas as filas

(queues: "*") com três threads de execução concorrentes por processo, garantindo pa-

ralelismo e eficiência no tratamento de notificações, e-mails e demais tarefas assíncronas. O

parâmetro polling_interval: 0.1 assegura uma checagem contínua da fila, com la-

tência mínima entre a criação de uma tarefa e sua execução efetiva. A configuração contida no

arquivo config/queue.yml permite que o Solid Queue funcione sem dependências exter-

nas, dispensando a utilização de sistemas adicionais como Redis ou Sidekiq. Todo o controle

das filas ocorre dentro da própria aplicação Rails, utilizando o banco de dados para persistência

e controle de concorrência.

O SGTCC utiliza o banco de dados PostgreSQL para armazenar as informações da

aplicação. Contudo, para a implementação do sistema de notificações, optou-se por uma ar-

quitetura de múltiplos bancos de dados, adicionando um segundo repositório exclusivo para o

gerenciamento das filas de execução.

Conforme detalhado na subseção 4.2.3, o Solid Queue foi configurado para operar

sobre um banco de dados SQLite dedicado, isolado do banco principal da aplicação. Essa

decisão técnica foi fundamental para evitar situações de database locking e garantir que opera-

ções intensivas em escrita — como a criação, atualização e remoção de tarefas assíncronas —

não interferissem no desempenho do PostgreSQL.

Além de reduzir a possibilidade de contenção de recursos, o uso de um banco secundá-

rio também simplifica a manutenção do sistema, permitindo que o módulo de notificações seja

escalado ou reiniciado independentemente do restante da aplicação.

36

A configuração da coexistência entre os dois bancos foi definida no arquivo

config/database.yml, conforme o exemplo a seguir:

Listing 4.3 – Configuração de múltiplos bancos de dados no arquivo config/database.yml.

1 d e f a u l t : &d e f a u l t

2 adapter : pos tg resq l

3 encoding : u t f 8

4 pool : 5

5 username : <%= ENV[’ db . username ’] %>

6 password : <%= ENV[’ db . password ’] %>

7 host : <%= ENV[’ db . host ’] %>

8 migra t ions_paths : db / migrate

9

10 development :

11 pr imary :

12 <<: * d e f a u l t

13 database : postgres

14

15 queue :

16 adapter : s q l i t e 3

17 database : storage / queue_development . s q l i t e 3

18 migra t ions_paths : db / queue_migrate

19 pool : 5

20 t imeout : 15000

21 p r o p e r t i e s :

22 journal_mode : WAL

23 . . . # cont inua ção da con f igu ra ção do banco de dados em out ros ambientes

No exemplo acima, o ambiente development define duas conexões: a conexão

primary, responsável pelos dados centrais da aplicação, e a conexão queue, utilizada ex-

clusivamente pelo Solid Queue. O modo WAL (Write-Ahead Logging) foi habilitado no SQLite

para melhorar o desempenho de gravação concorrente, assegurando integridade e eficiência

no processamento de tarefas assíncronas.

37

4.2.2 Estruturação das classes de notificação

Para dar início ao desenvolvimento, foi projetada uma arquitetura flexível e extensível,

capaz de acomodar novos tipos de eventos, conteúdos e regras de disparo, sem necessidade

de alterações estruturais no código. Essa flexibilidade decorre da separação explícita entre três

modelos principais — Notification, NotificationTemplate e NotificationRule — cada um responsá-

vel por um aspecto independente da gestão de notificações. Essa divisão reduz o acoplamento

entre as partes e permite que novos comportamentos sejam adicionados apenas por meio de

configurações e registros no banco de dados, sem que seja necessário modificar as classes

existentes. Por exemplo, para introduzir um novo tipo de notificação no sistema, basta criar um

novo template e definir suas regras correspondentes, sem editar os serviços ou jobs já existen-

tes. De forma semelhante, é possível alterar textos, periodicidades, destinatários ou condições

de envio apenas modificando dados persistidos, preservando o restante da arquitetura.

O modelo Notification é responsável por registrar cada instância de notificação gerada

no sistema. Ele armazena informações como o destinatário (recipient), o tipo da notificação

(notification_type), os dados específicos do evento (data) e o estado atual (status, scheduled_-

at, sent_at). Essa modelagem permite acompanhar o ciclo de vida completo de uma notificação,

desde o agendamento até o envio e eventuais reenvios.

O modelo NotificationTemplate define a estrutura textual das notificações, contendo cam-

pos como key, subject e body, que servem de base para mensagens de e-mail e alertas exibidos

no sistema. Essa separação entre dados e conteúdo textual facilita a customização dos mode-

los de mensagem, permitindo que o administrador altere títulos e textos sem a necessidade de

alterar o código-fonte.

Já o modelo NotificationRule define as regras de disparo, como o número de dias ou

horas de antecedência em relação ao evento, o número máximo de tentativas de reenvio e o

intervalo entre elas. Essas regras são associadas a um template e permitem configurar notifi-

cações flexíveis, adaptando-se a diferentes cenários do sistema, como prazos de atividades ou

confirmação de bancas.

4.2.3 Processamento assíncrono com Active Job e Solid Queue

Durante o desenvolvimento do sistema de notificações, tornou-se necessário lidar com

operações assíncronas — tarefas que não devem ser executadas no mesmo ciclo da requisi-

ção web, como o envio de e-mails, o agendamento de mensagens futuras e a execução de

verificações recorrentes. Para atender a essa necessidade, optou-se pela utilização do Active

Job, framework nativo do Ruby on Rails que fornece uma interface padronizada para a cria-

ção, enfileiramento e execução de tarefas em segundo plano. O Active Job abstrai a lógica de

comunicação entre a aplicação e o mecanismo de fila, permitindo que o mesmo código seja

compatível com diferentes adaptadores.

38

O desenvolvimento do processamento de tarefas assíncronas iniciou-se com o adapta-

dor SideKiq, uma biblioteca que gerencia as tarefas em segundo plano, porém foram encontra-

das algumas dificuldades ao utilizá-lo, a primeira foi um aumento das dependências do projeto,

pois o SideKiq necessita de um servidor para executar as tarefas e outro servidor para rodar

o Redis2, um armazenamento de estrutura de dados em memória, o qual é utilizado para ar-

mazenar os serviços em segundo plano, outro problema encontrado foi a utilização do banco

de dados da aplicação para armazenar as notificações, o que pode acarretar em atrasos nas

requisições dos usuários, pelo fato do banco estar sendo utilizado por uma tarefa assíncrona

durante o processamento de uma notificação.

Pensando em contornar esses problemas foi realizada a mudança de adaptador de tare-

fas em segundo plano, a nova escolha foi o Solid Queue3, uma solução projetada para oferecer

um mecanismo de enfileiramento leve, eficiente e totalmente integrado à aplicação, sem ne-

cessidade de dependências externas, outro ponto que baseou essa mudança foi que esse é o

adaptador padrão do Rails a partir da versão 8, além desses motivos o Solid Queue também

facilita trabalhar com outro banco de dados para as notificações e os processos assíncronos, a

tecnologia de banco de dados escolhida para esse banco secundário foi o SQLite, por se tratar

de um banco de dados embutido, leve e por não precisar de um servidor.

4.2.4 Arquitetura de Serviços (Service Objects)

Para manter a lógica de negócios organizada, testável e aderente ao Princípio da

Responsabilidade Única (SRP), a arquitetura do sistema de notificações foi dividida em um

conjunto de Service Objects (Objetos de Serviço) e Jobs (Tarefas) especializados. Cada

classe tem um propósito único, evitando que Models (como Notification) ou Jobs (como

DispatchJob) acumulem responsabilidades. A arquitetura de serviços é composta pelos se-

guintes componentes:

• Notifications::CreateJob (Job de Criação): Este é um job do Active Job.

Sua única função é receber os dados brutos de um evento (tipo de notificação, destina-

tário, etc.) e chamar o SchedulerService. Esta classe é o ponto-chave da arqui-

tetura para resolver problemas de concorrência: os Hooks (executados pelo processo

web do Puma) apenas enfileiram este job — uma operação de escrita muito rápida na

tabela solid_queue_jobs — em vez de chamar o SchedulerService direta-

mente. Isso transfere a lógica de criação da notificação (que envolve múltiplas leituras

e escritas nas tabelas notifications e notification_templates) para o

processo worker do Solid Queue. Ao garantir que apenas o processo worker escreva

2 Disponível em https://redis.io/. Acessado em 06 de novembro de 2025.
3 Disponível em https://github.com/rails/solid_queue. Acessado em 06 de novembro de 2025.

https://redis.io/
https://github.com/rails/solid_queue

39

no banco de dados SQLite, o conflito de database is locked com o processo

web é eliminado.

• Notifications::SchedulerService (Serviço de Agendamento): Respon-

sável por criar ou atualizar o registro da Notification no banco de dados.

Ele recebe os dados do CreateJob, consulta o NotificationTemplate e o

NotificationRule associados para calcular o scheduled_at (horário de en-

vio). Ele define o status inicial como pending (para envio imediato) ou scheduled

(para envio futuro) e persiste o registro. Ele não enfileira o envio.

• Notifications::SchedulerPollerJob (Job de Sondagem/Recorrente):

Este é um job recorrente (definido no recurring.yml do Solid Queue para rodar

a cada 15 minutos). Sua função é consultar o banco de dados por notificações "en-

viáveis"(usando o escopo Notification.pending_to_send, que busca status

pending ou scheduled com scheduled_at no passado). Para cada notificação

encontrada, ele invoca o ProcessorService.

• Notifications::ProcessorService (O "Cérebro"): Este é o serviço de ló-

gica mais complexo. Ele decide se uma notificação encontrada pelo Poller deve real-

mente ser enviada. Ele executa as seguintes verificações:

– Verifica se a notificação já foi finalizada (enviada, falhada ou cancelada).

– Chama o Notifications::StopChecker para verificar se a condição

de parada foi atingida (ex: o documento já foi assinado?).

– Verifica se o número de tentativas (attempts) excedeu o max_attempts.

– Se todas as verificações passarem, ele enfileira o

Notifications::DispatchJob para o envio.

– Após enfileirar, ele atualiza o status da notificação (incrementa attempts e

define como sent se for envio único, ou scheduled para o futuro se for

uma notificação insistente).

• Notifications::StopChecker (Serviço de Verificação): Um serviço alta-

mente especializado chamado pelo ProcessorService. Ele contém a lógica de

negócios para determinar se uma notificação "insistente"(como um lembrete de assi-

natura pendente) deve ser interrompida. Ele se conecta ao banco de dados principal

(PostgreSQL) para verificar o estado de outros modelos (ex: Signature.status

== true).

• Notifications::DispatchJob (Job de Despacho): Um job simples, sua

única tarefa é receber um notification_id e chamar o Dispatcher. O uso

de um job aqui isola a tentativa de envio (que pode falhar devido a problemas de rede

40

ou API) da lógica de processamento, permitindo que o Solid Queue use suas próprias

políticas de retentativa para falhas de infraestrutura.

• Notifications::Dispatcher (Serviço de Entrega): O componente final. Ele

lê o atributo channel do template da notificação (ex: ’email’) e invoca o método apro-

priado, como NotificationMailer.generic_email(...).

Esta arquitetura desacoplada garante que cada componente possa ser modificado e

testado de forma independente, além de resolver os desafios de concorrência do banco de

dados SQLite.

4.2.5 Integração com Eventos do Sistema (Hooks)

A integração do sistema de notificações com a lógica de negócios principal da aplicação

é realizada através de Hooks (Ganchos) e callbacks do Active Record.

A lógica é implementada da seguinte forma:

• Callbacks nos Modelos: Os modelos principais da aplicação (ex: Document,

AcademicActivity, ExaminationBoard) utilizam callbacks como after_-

commit que são chamadas após a criação ou atualização de um objeto daquele mo-

delo. O uso de after_commit é crucial, pois garante que a transação do banco

de dados principal (PostgreSQL) foi concluída com sucesso antes de tentar criar uma

notificação (que escreve no banco SQLite).

• Módulos de Hooks: Os callbacks não contêm lógica de negócios. Em vez disso,

eles chamam um método de classe em um módulo de Hook dedicado, como

Notifications::Hooks::Documents.document_created(self).

• Tradução da Lógica: Dentro do módulo de Hook (ex:

Notifications::Hooks::Documents), o método document_created

recebe o objeto do modelo (ex: um Document). A função do hook é transformar

esse objeto de negócios em parâmetros de notificação: quem deve ser notificado

(recipient), qual o tipo de notificação (notification_type) e quais dados

(data) o e-mail precisará.

• Enfileiramento do Job: A ação final do hook é chamar o

Notifications::CreateJob.perform_later(...), passando os

parâmetros necessários para a criação da notificação.

• Reutilização de Código: Um módulo Notifications::HookHelpers foi cri-

ado para compartilhar lógicas comuns entre os diferentes hooks, como o método

schedule_notification (um encapsulador para CreateJob.perform_-

later) e event_key (para gerar chaves de evento únicas).

41

Essa abordagem mantém os modelos da aplicação livres de regras complexas de notifi-

cação, centralizando a decisão de quando e quem notificar nos módulos de Hook. Dessa forma,

o processamento pesado — como criação de registros, cálculos de agendamento ou chamadas

externas — é deslocado para o sistema de jobs em segundo plano, reduzindo o acoplamento e

preservando o desempenho do processo web.

4.2.6 Estratégia de Testes e Validação

Garantir a confiabilidade de um sistema de notificações assíncrono e distribuído (entre

dois bancos de dados e múltiplos serviços) exige uma estratégia de testes robusta. A aborda-

gem utilizada foi a de testes de unidade com RSpec, focando em isolar e validar cada compo-

nente da arquitetura. A cobertura de testes foi dividida da seguinte forma:

• Testes de Modelo (Models):

– Notification: Testa as validações, os escopos (especialmente

pending_to_send, validando sua lógica de tempo) e os callbacks, ga-

rantindo que são chamados corretamente.

– NotificationTemplate / NotificationRule: Testam as associa-

ções e validações básicas.

• Testes de Callback (Models):

– Testes de integração de baixo nível (ex: em spec/models/document_-

spec.rb) que usam o matcher have_enqueued_-

job(Notifications::CreateJob).

– Esses testes confirmam que, ao criar ou atualizar um modelo (ex:

create(:document)), o callback after_commit é disparado corre-

tamente e enfileira o CreateJob.

– "Dublês"(Stubs) são usados para isolar o callback testado de ou-

tros callbacks (ex: allow(document).to receive(:create_-

signatures)) para evitar "ruído"nos testes.

• Testes de Job (Jobs):

– Utilizam o ActiveJob::TestHelper e seus matchers (ex: have_-

enqueued_job).

– CreateJob: Testa se o método perform chama corretamente o

Notifications::SchedulerService com os argumentos que rece-

beu.

42

– SchedulerPollerJob: Testa se o perform consulta o escopo

Notification.pending_to_send (que é "dublado") e chama o

Notifications::ProcessorService para cada notificação retor-

nada.

– DispatchJob: Testa se o perform encontra a notificação, chama

Notifications::Dispatcher.new(notification).call e re-

levanta exceções para acionar os retries do Solid Queue.

• Testes de Serviço (Services):

– SchedulerService: Testa todos os caminhos lógicos: criação de notifi-

cações pending (para agora), scheduled (com regras days_before

ou hours_after), e a lógica de idempotência (não sobrescrever uma noti-

ficação sent ou failed).

– ProcessorService: O teste mais complexo. "Dubla"(stubs) o

StopChecker e usa have_enqueued_job para verificar a lógica:

* Testa se os guards (verificações iniciais) funcionam (ex: return if

notification.sent?).

* Testa se o job é cancelado se StopChecker.met? for true.

* Testa se o job falha se attempts >= max_attempts.

* Testa a lógica de "envio único"(marca como sent após enfileirar).

* Testa a lógica "insistente"(marca como scheduled para o futuro).

– Dispatcher: "Dubla"(stubs) o NotificationMailer e verifica se

deliver_later é chamado para o canal email.

• Testes de Mailer (Mailers):

– Em spec/mailers/notification_mailer_spec.rb, testa o mé-

todo generic_email.

– Verifica se os cabeçalhos (to, subject, from) estão corretos.

– Verifica se a interpolação das variáveis (ex: %<academic_name>) está fun-

cionando no assunto e no corpo.

– Verifica se o fallback para chaves ausentes (Hash.new { ... }) impede

o KeyError.

– Verifica se ambas as partes, text/plain (com
 convertido para

n) e text/html (com
), são geradas.

Esta estratégia de testes de unidade granulares permite que o sistema seja refatorado

com segurança e que qualquer falha no fluxo de notificação possa ser identificada e corrigida.

43

4.3 Resultados obtidos

A implementação do sistema de notificações no SGTCC resultou em uma arquitetura

isolada do fluxo principal da aplicação, permitindo o envio automatizado de comunicações aos

usuários de forma assíncrona e confiável. Com a inclusão do framework Active Job e do

adaptador Solid Queue, foi possível estabelecer um fluxo de processamento independente

do servidor web, garantindo maior desempenho, escalabilidade e tolerância a falhas durante a

execução das tarefas de notificação.

Embora na metodologia proposta inicialmente previsse a divisão dos requisitos em tare-

fas menores e independentes, acompanhadas de revisões contínuas pela equipe por meio do

GitFlow e da gestão no ClickUp, essa abordagem não pôde ser integralmente seguida durante

o desenvolvimento. A principal dificuldade esteve relacionada à incompatibilidade de horários

entre o autor e os orientadores, o que dificultou a realização de revisões frequentes, reuniões

de alinhamento e validações incrementais ao longo do processo.

Diante desse cenário, a estratégia de desenvolvimento precisou ser adaptada. Em vez

de uma divisão refinada em pequenas tarefas com ciclos constantes de revisão, o trabalho foi

conduzido de maneira mais concentrada: os requisitos previamente levantados foram analisa-

dos e implementados de forma contínua, com validações realizadas à medida que a funciona-

lidade completas foi concluída. Essa mudança permitiu manter o progresso do projeto apesar

das limitações de comunicação.

Assim, o desenvolvimento acabou ocorrendo em ciclos mais longos e com maior auto-

nomia por parte do autor, priorizando a entrega funcional da implementação no sistema para

posterior avaliação conjunta. Essa adaptação do processo metodológico não impediu o cumpri-

mento dos objetivos definidos, mas representou uma diferença relevante entre o planejamento

inicial e a execução prática do trabalho.

O principal resultado obtido foi a criação de um módulo de notificações completamente

desacoplado da lógica principal do sistema, operando de maneira autônoma sobre um banco

de dados secundário (SQLite). Essa separação eliminou os problemas de bloqueio (database

locking) anteriormente observados durante operações simultâneas de leitura e escrita, além de

permitir que o processamento de mensagens e o envio de e-mails ocorressem sem impacto

perceptível no desempenho do SGTCC.

As funcionalidades implementadas permitem que o sistema:

• Gere notificações automáticas baseadas em eventos do sistema, como criação de do-

cumentos, prazos de envio e agendamento de bancas;

• Agende notificações futuras conforme regras configuráveis de antecedência e reenvio;

• Interrompa notificações de lembrete de forma automática, quando a ação esperada

(como uma assinatura pendente) é concluída;

44

• Enfileire e processe os envios em segundo plano, evitando travamentos e sobrecarga

do servidor principal;

Além disso, a integração dos hooks aos modelos principais da aplicação tornou o pro-

cesso de geração de notificações transparente e automatizado. A criação ou atualização de

registros relevantes (como documentos, prazos ou bancas) passa a acionar imediatamente o

enfileiramento das notificações correspondentes, sem a necessidade de intervenção manual.

A partir dos testes realizados, foi possível confirmar que o sistema consegue lidar com

múltiplas notificações simultâneas, mantendo consistência nos registros e enviando os e-mails

corretamente de acordo com as regras estabelecidas. O comportamento esperado foi validado

para diferentes cenários — como notificações insistentes, notificações únicas e notificações

com múltiplos destinatários —, demonstrando a robustez e a previsibilidade do mecanismo de

agendamento e envio.

Resumidamente, o desenvolvimento resultou em uma melhoria na capacidade do

SGTCC de se comunicar com seus usuários, automatizando processos que antes eram ma-

nuais e centralizando a gestão de notificações. A arquitetura construída possibilita, ainda, a

expansão para novos tipos de aviso e a inclusão futura de outros canais de comunicação, como

mensagens instantâneas, sem necessidade de reestruturação do sistema existente.

4.3.1 Métricas

O processo de desenvolvimento das notificações foi desenvolvido em 17 commits cri-

ando 1 PR (Pull Request), modificando 80 arquivos, adicionando 2832 linhas e removendo 49.

A ampliação dos testes automatizados foi diretamente relacionada às funcionalidades

de notificações desenvolvidas neste trabalho. Antes das implementações, o sistema possuía

812 testes automatizados, distribuídos entre modelos, serviços e controladores já existentes. O

conjunto de testes criado para validar o novo módulo de notificações adicionou mais 45 testes,

totalizando 857 testes ao final da implementação.

Os testes produzidos abrangem geração de notificações, callbacks de modelos, agenda-

mento, despacho, regras de repetição, envio de e-mails, verificação de payloads, interpretação

de templates, falhas de interpolação, execução de jobs assíncronos e fluxos de processamento

periódico. Esses cenários representam 100% dos fluxos introduzidos por este trabalho. Em ter-

mos de verificações (assertivas), o número total passou de 974 para 1033, um acréscimo de 59

verificações decorrentes da validação dos comportamentos esperados.

Em resumo, este trabalho contribuiu diretamente com:

• 45 novos testes especificamente relacionados ao sistema de notificações;

• 59 novas verificações;

• validação completa de todos os fluxos síncronos e assíncronos introduzidos.

45

Essas métricas demonstram que as funcionalidades desenvolvidas foram incorporadas

ao sistema com garantia de qualidade, rastreabilidade e comportamento validado, refletindo

diretamente nos objetivos deste trabalho.

46

5 CONSIDERAÇÕES FINAIS

O presente trabalho teve como objetivo principal o desenvolvimento e a implementação

de uma estratégia de notificações automáticas para o sistema SGTCC, considerando as reais

necessidades dos usuários envolvidos nos processos de TCC. A partir do levantamento de

requisitos com discentes e docentes, foi possível identificar os principais pontos de falha na

comunicação sobre prazos, eventos e pendências, que frequentemente resultavam em atrasos

ou retrabalho.

Com base nessas informações, foi projetada e implementada uma arquitetura de notifi-

cações integrada ao sistema existente, com foco na clareza, na confiabilidade e na pontualidade

das mensagens. A solução proposta tem como fundamento o uso do framework Active Job

e do adaptador Solid Queue, que possibilitaram o processamento assíncrono de tarefas,

garantindo o envio das notificações de forma eficiente, sem comprometer o desempenho da

aplicação principal.

Com a implementação do módulo de notificações esperam-se resultados significativos

para o SGTCC ao decorrer do tempo. O sistema passou a ser capaz de gerar e enviar notifica-

ções automáticas de acordo com eventos internos, como a criação de documentos, prazos de

entrega e agendamento de bancas, além de permitir agendamentos futuros e reenvios basea-

dos em regras configuráveis. A arquitetura adotada também eliminou problemas de concorrência

e bloqueio de banco de dados, assegurando maior estabilidade e fluidez nas operações.

Do ponto de vista técnico, a principal contribuição deste trabalho está na automação e

na comunicação entre os usuários do sistema. Antes da implementação, o acompanhamento

de prazos e pendências dependia majoritariamente de ações manuais, o que resultava em es-

quecimentos e atrasos. Com a nova estrutura, docentes, discentes e demais envolvidos passam

a receber lembretes e avisos automáticos, reduzindo a probabilidade de falhas humanas e me-

lhorando a organização e a transparência no acompanhamento das etapas do TCC.

A utilização de Service Objects, Jobs e Hooks contribuiu para uma arquitetura mais

modular, organizada e aderente aos princípios de boas práticas de engenharia de software,

como o Princípio da Responsabilidade Única (SRP)1 e a separação de preocupações. Essa

abordagem tornou o código mais legível, testável e preparado para expansões futuras, além

de facilitar a manutenção e o trabalho colaborativo dentro da equipe de desenvolvimento do

SGTCC.

Entre as limitações identificadas, destaca-se que a versão atual do sistema realiza no-

tificações exclusivamente por e-mail. Apesar de a arquitetura desenvolvida permitir a inclusão

de outros canais, como notificações via WhatsApp ou alertas internos na própria plataforma,

essas funcionalidades ainda não foram implementadas. A estrutura atual, baseada em serviços

e jobs desacoplados, permite que novos canais sejam adicionados sem alterar o fluxo existente:

bastaria criar novos serviços responsáveis pelo envio via API do WhatsApp ou pelo disparo de

1 Definido por Robert C. Martin em Agile Software Development: Principles, Patterns, and Practices.

47

notificações internas, reutilizando o mesmo mecanismo de agendamento, enfileiramento e re-

envio. A incorporação desses dois novos canais poderia ampliar o alcance das notificações e

aumentar a taxa de engajamento dos usuários, pois a preferência de meios de comunicação

difere entre os diferentes tipos de usuários.

Outra limitação diz respeito ao uso do banco de filas baseado em SQLite, que, embora

leve e eficiente, pode não ser o mais adequado para cenários de produção com alta demanda.

No entanto, esse não é o caso do SGTCC, cujo volume de uso é moderado e controlado. Dessa

forma, o SQLite se apresenta como uma solução ideal para o contexto institucional atual,

oferecendo simplicidade, baixo custo operacional e desempenho suficiente para o volume de

tarefas processadas pelo sistema.

Como trabalhos a complementar o desenvolvimento dessa funcionalidade, propõe-se

a ampliação do sistema de notificações com a integração de novos canais de comunicação,

especialmente via API do WhatsApp e notificações em tempo real dentro da própria aplicação.

Concluindo, o sistema de notificações desenvolvido representa um avanço significativo

na comunicação e na eficiência operacional do SGTCC. A solução automatiza processos es-

senciais, reduz erros decorrentes de falha humana e estabelece uma base sólida para futuras

melhorias. Dessa forma, contribui diretamente para a modernização do sistema e para a evolu-

ção contínua da gestão acadêmica na instituição.

48

REFERÊNCIAS

ATLASSIAN. Gitflow Workflow. 2025. Acesso em: 4 jun. 2025. Disponível em: https:
//www.atlassian.com/br/git/tutorials/comparing-workflows/gitflow-workflow.

CLICKUP. ClickUp Documentation. 2025. Documentação oficial da plataforma de
gerenciamento de projetos. Disponível em: https://help.clickup.com. Acesso em: 05 jun. 2025.

COINT. Normas Operacionais Complementares do Trabalho de Conclusão de
Curso do Curso Superior de Tecnologia em Sistemas para Internet - Câmpus
Guarapuava. 2023. Disponível em: https://tcc.tsi.pro.br/uploads/attached_document/file/2/
normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf. Acesso em: 23 abr. 2025.

DOCKER. Docker Documentation. 2025. Documentação oficial. Disponível em:
https://docs.docker.com. Acesso em: 06 jun. 2025.

FERREIRA Érico D. Desenvolvimento de um sistema para o gerenciamento do processo
de Trabalho de Conclusão de Curso do curso de Tecnologia em Sistemas para Internet
da UTFPR Campus Guarapuava. 2015. Monografia (TCC) — Universidade Tecnológica
Federal do Paraná, 2015.

FIGMA. Figma – Design, Prototype, and Collaborate All in the Browser. 2025.
Documentação oficial. Disponível em: https://www.figma.com. Acesso em: 06 jun. 2025.

GIT. Git – Distributed Version Control System. 2025. Documentação oficial. Disponível em:
https://git-scm.com. Acesso em: 05 jun. 2025.

GITHUB. GitHub Docs. 2025. Documentação oficial. Disponível em: https://docs.github.com.
Acesso em: 05 jun. 2025.

GitLab Inc. O que é CI/CD? 2025. Acesso em: 4 jun. 2025. Disponível em: https:
//about.gitlab.com/pt-br/topics/ci-cd/.

LIMA, A. C. D. Projeto e implementação de interface baseada na experiêcia do usuário
para um sistema de gerenciamento de trabalho de conclusão de curso. 2023. Monografia
(TCC) — Universidade Tecnológica Federal do Paraná, 2023.

LUZ, G. S. da. Atuallização do Framework Rails para garantia de evolução do Sistema de
Gestão de TCC. 2024. Monografia (Projeto de TCC) — Universidade Tecnológica Federal do
Paraná, 2024.

RAILS, R. on. Ruby on Rails Guides. 2025. Documentação oficial. Disponível em:
https://guides.rubyonrails.org. Acesso em: 05 jun. 2025.

SEBRAE. Metodologia MoSCoW: Como priorizar requisitos de projetos de forma
estratégica. 2022. Acessado em: 12 de junho de 2025. Disponível em: https://sebrae.com.br/
Sebrae/Portal%20Sebrae/Arquivos/ebook_sebrae_metodologia_moscow.pdf.

SILVA, R. G. A. Aperfeiçoamento do Sistema de Gestão de processos de Trabalho
de Conclusão de curso de Tecnologia em Sistemas para Internet Da UTFPR Campus
Guarapuava. 2019. Monografia (TCC) — Universidade Tecnológica Federal do Paraná, 2019.

https://www.atlassian.com/br/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/br/git/tutorials/comparing-workflows/gitflow-workflow
https://help.clickup.com
https://tcc.tsi.pro.br/uploads/attached_document/file/2/normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf
https://tcc.tsi.pro.br/uploads/attached_document/file/2/normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf
https://docs.docker.com
https://www.figma.com
https://git-scm.com
https://docs.github.com
https://about.gitlab.com/pt-br/topics/ci-cd/
https://about.gitlab.com/pt-br/topics/ci-cd/
https://guides.rubyonrails.org
https://sebrae.com.br/Sebrae/Portal%20Sebrae/Arquivos/ebook_sebrae_metodologia_moscow.pdf
https://sebrae.com.br/Sebrae/Portal%20Sebrae/Arquivos/ebook_sebrae_metodologia_moscow.pdf

	Resumo
	Abstract
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	1.2 Justificativa

	2 Materiais e Métodos
	2.1 Materiais
	2.2 Métodos
	2.2.1 Levantamento e Priorização de Requisitos
	2.2.2 Processo de Desenvolvimento

	3 Análise e Projeto
	3.1 Descrição do SGTCC
	3.2 Levantamento dos requisitos
	3.3 Análise de Requisitos
	3.3.1 Histórias de usuário
	3.3.2 Protótipos de Telas

	4 Estratégias de Notificação do SGTCC
	4.1 Definição
	4.1.1 Modelos de notificação
	4.1.2 Templates de E-mail
	4.1.3 Fluxo de Envio

	4.2 Implementação das funcionalidades
	4.2.1 Configuração do ambiente de desenvolvimento
	4.2.2 Estruturação das classes de notificação
	4.2.3 Processamento assíncrono com Active Job e Solid Queue
	4.2.4 Arquitetura de Serviços (Service Objects)
	4.2.5 Integração com Eventos do Sistema (Hooks)
	4.2.6 Estratégia de Testes e Validação

	4.3 Resultados obtidos
	4.3.1 Métricas

	5 Considerações Finais
	Referências

