
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

BEATRIZ FRÉCCIA AMANTE

RASTREAMENTO DE PESSOAS POR TÉCNICAS DE APRENDIZAGEM DE
MÁQUINA

GUARAPUAVA

2025

BEATRIZ FRÉCCIA AMANTE

RASTREAMENTO DE PESSOAS POR TÉCNICAS DE APRENDIZAGEM DE

MÁQUINA

Person tracking using machine learning techniques

Dissertação de Trabalho de Conclusão de
Curso de Graduação apresentado como
requisito para obtenção do título de Tecnólogo
em Tecnologia em Sistemas para Internet do
Curso Superior de Tecnologia em Sistemas
para Internet da Universidade Tecnológica
Federal do Paraná.

Orientadora:Drª Kelly Lais Wiggers

GUARAPUAVA

2025

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do traba-
lho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es).
Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são co-
bertos pela licença.4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

BEATRIZ FRÉCCIA AMANTE

RASTREAMENTO DE PESSOAS POR TÉCNICAS DE APRENDIZAGEM DE

MÁQUINA

Dissertação de Trabalho de Conclusão de
Curso de Graduação apresentado como
requisito para obtenção do título de Tecnólogo
em Tecnologia em Sistemas para Internet do
Curso Superior de Tecnologia em Sistemas
para Internet da Universidade Tecnológica
Federal do Paraná.

Data de aprovação: 03/dezembro/2025

Eleandro Maschio
Doutor

Universidade Tecnologica Federal do Paraná

Renata Luiza Stange
Doutora

Universidade Tecnologica Federal do Paraná

Kelly Lais Wiggers
Doutora

Universidade Tecnologica Federal do Paraná

GUARAPUAVA

2025

AGRADECIMENTOS

Agradeço, primeiramente, a minha orientadora Profa. Dra. Kelly Lais Wiggers, por sua

orientação, paciência e apoio incondicional. Há momentos em que o mundo parece assusta-

dor e muito grande para nós. Sua amizade e humanidade fizeram toda a diferença, me dando

esperanças para seguir em frente de cabeça erguida.

Aos professores, também. Se você que está lendo isso, também teve a sorte de estudar

no curso de Sistemas para Internet no Campus da UTFPR de Guarapuava, saiba que você está

entre mestres e doutores incrivelmente qualificados e humanos. Minha mais eterna gratidão.

Incluo aqui também um spotlight especial ao Professor Doutor Eleandro Maschio, o qual

eu admiro grandemente. Saiba, professor, se você ler essas linhas, lhe admiro profundamente

e o vejo como inspiração, assim como minha orientadora.

À minha família, mesmo distante fisicamente, ainda assim me apoiou nesses anos de

forma que apenas aqueles que nos conhecem como a palma da mão são capazes. Aos meus

pais, Maria Fréccia Amante e Vilmar Amante Filho, que mesmo com todos os erros e acertos,

sempre quiseram o melhor pra mim e torceram para que eu chegasse onde cheguei, e aonde

ainda chegarei. Ao meus irmãos, também, Samuel e George. Eu não sou uma pessoa religiosa,

mas se há um Deus, eu agradeço todos os dias que tive o prazer de crescer ao lado deles, pois

algumas pessoas são como um presente divino.

Ao grupo de TI da Cooperativa Agraria, por moldar meu início profissional. À Code-

miner42, que me fez, e faz, tão realizada profissionalmente. Vocês são incríveis, e eu serei

eternamente grata a tudo que aprendi, e ainda aprendo, lá dentro.

Queria agradecer, também, à família que escolhemos, aos laços que não são de sangue,

mas continuam tão significativos quanto. Esses foram os três anos mais carregados da minha

vida. Aconteceram tantas coisas, e constantemente eu me sentia sobrecarregada, numa cidade

que não é minha, cuidando de problemas que não eram meus, preenchendo minha cabeça

apenas de coisas sombrias, sem ver uma luz no final do túnel. Perdi a conta de quantas vezes

pensei em desistir, sem família para apoiar nas proximidades, com a vida pessoal conturbada

por anos de problemas acumulados e, quando as coisas alcançaram um nível insustentável,

quem me segurou foram vocês. Bruno, Roberta, Patrícia, Carolina, Tiago, Benjamin, Santiago...

São tantos nomes, mas vocês sabem que estão todos aqui.

Saibam que independente de onde a vida nos leve, vocês sempre terão um lugar ao

meu lado.

Obrigada por existirem.

Por ultimo, ao leitor:

As vezes a vida parece insustentável.

As vezes nós nos diminuímos para caber em espaços que não nos condizem, ou nos

calamos para mantermos a paz, pois crescemos em ambientes conturbados que nos fazem

acreditar que afeto e dor andam de mãos dadas.

Vocês não estão sozinhos.

Vocês são o suficiente.

Eu prometo que isso passará.

Não desistam de si mesmos. Dos seus sonhos.

O sol volta, mesmo depois da noite mais longa

RESUMO

Este trabalho propõe o desenvolvimento de uma API RESTful acessível e personalizável para

rastreamento e reidentificação de pessoas em vídeos, utilizando técnicas de aprendizado de

máquina e visão computacional. A proposta busca democratizar o uso de sistemas baseados

em inteligência artificial (IA) ao integrar modelos de detecção, rastreamento e extração

de características visuais em uma interface funcional e intuitiva. Tais tecnologias, embora

amplamente estudadas, ainda enfrentam barreiras de adoção devido à complexidade técnica e

à escassez de ferramentas públicas e bem documentadas. A solução desenvolvida permitirá

identificar indivíduos em transmissões ao vivo ou vídeos enviados, com suporte à adição

de identificadores únicos e proteção da privacidade por meio de técnicas de criptografia.

A iniciativa visa preencher lacunas existentes entre bibliotecas de pesquisa e aplicações

práticas, oferecendo uma plataforma modular aplicável em contextos como segurança urbana,

automação, controle de acesso e projetos sociais. O projeto utiliza bibliotecas consolidadas

como YOLO e OSNet aliadas a frameworks web como FastAPI, para construir um pipeline de

rastreamento end-to-end com foco em desempenho e acessibilidade para desenvolvedores e

pesquisadores.

Palavras-chave: inteligencia artificial; deep learning; people tracking; re-identification; real-time

video.

ABSTRACT

This dissertation proposes the development of an accessible and customizable RESTful API

for person tracking and re-identification in videos, using machine learning and computer vision

techniques. The goal is to democratize the use of AI-based systems by integrating object

detection, tracking, and feature extraction into a functional and user-friendly interface. Despite

significant advances in this area, adoption remains limited due to technical complexity and the

lack of public, well-documented tools. The proposed solution identifies individuals in both live

video streams and uploaded recordings, supports unique identifiers, and includes data privacy

measures such as encryption. The system bridges the gap between research libraries and

practical applications, offering a modular platform suitable for urban security, automation, access

control, and social projects. Built with established libraries such as YOLO, OSNet, and web

frameworks like FastAPI, this end-to-end pipeline emphasizes performance and accessibility for

developers and researchers.

Keywords: artificial intelligence; deep learning; people tracking; re-identification; real-time video.

LISTA DE ABREVIATURAS E SIGLAS

Siglas

API Interface de Programação de Aplicações (API, do inglês Application Program-

ming Interface)

DDD Design Direcionado Domínio (DDD do inglês Domain Driven Design)

GB Gigabyte (GB)

GPU Unidade de Processamento Gráfico (GPU do inglês Graphic Process Unit)

HTTP Protocolo de Transferência de Hipertexto (HTTP, do inglês Hypertext Transfer

Protocol)

IA Inteligência Artificial

JSON Notação de Objetos JavaScript (JSON, do inglês JavaScript Object Notation)

RAM Memória de Acesso Aleatório (RAM, do inglês Random Access Memory)

RBAC Controle de Acesso Baseado em Papéis (RBAC do inglês Role-Based Access

Control)

RNC Redes neurais convolucionais, do inglês Convolutional Neural Network)

ROI Área de interesse (ROI do inglês Region of Interest)

TCP Contexto de Protocolo de Texto (TPC do inglês Text Context Protocol)

TI Tecnologia da Informação

XSS Cross-site scripting)

SUMÁRIO

1 INTRODUÇÃO . 9

1.1 Objetivos . 10

1.1.1 Objetivo geral . 10

1.1.2 Objetivos específicos . 10

1.2 Justificativa . 11

2 APRENDIZADO DE MÁQUINA . 13

2.1 Aprendizado Profundo . 13

2.2 Detecção de pessoas via aprendizado profundo 19

2.3 Reidentificação de Pessoas (Person Re-Identification) 21

2.4 Estudos Relacionados . 23

3 MATERIAIS E MÉTODOS . 25

3.1 Materiais . 25

3.1.1 Desenvolvimento da Interface de Programação de Aplicações (API, do inglês

Application Programming Interface) (API) RESTful para regra de negócio . . 28

3.1.2 Desenvolvimento das arquiteturas de aprendizado profundo 28

3.2 Métodos . 31

3.2.1 Detecção de Bounding Boxes . 31

3.2.2 Extração de Embeddings . 32

3.2.3 Avaliação do desempenho . 34

3.2.4 Integração do modelo via API . 35

3.2.5 Desenvolvimento da Interface Web . 36

3.2.6 Criação da documentação . 37

4 RESULTADOS FINAIS . 38

4.1 Telas . 38

4.2 Desenvolvimento da API e Arquitetura do Sistema 44

4.3 Desenvolvimento e Treinamento das IAs 46

4.4 Documentação . 52

5 CONSIDERAÇÕES FINAIS . 53

REFERÊNCIAS . 54

GLOSSÁRIO . 58

APÊNDICES 60

APÊNDICE A – TRECHOS DE CÓDIGOS PARA ARQUITETURA DOMAIN

DRIVEN DESIGN EM TYPESCRIPT 62

APÊNDICE B – TRECHO DE CÓDIGO EM PYTHON PARA PREDIÇÃO DE

PERSON POR EMBEDDING 65

APÊNDICE C – TRECHO DE SCRIPT PARA CALCULO DE DISTÂNCIA

EUCLIDIANA . 68

APÊNDICE D – TRECHO DE CÓDIGO ENCRIPTAÇÃO DE DADOS 70

ANEXO A – CHECAGEM DE QUALIDADE 73

ANEXO B – CHECAGEM DE QUALIDADE 75

9

1 INTRODUÇÃO

Com o avanço da era da informação, a sociedade tem se adaptado de forma contínua

às inovações tecnológicas. Essas, por sua vez, permeiam desde aspectos cotidianos, como a

substituição de linhas telefônicas por dispositivos móveis, até aplicações complexas de Inteli-

gência Artificial voltadas à automação e otimização de processos em escala.

Assistentes virtuais, chatbots e sistemas inteligentes tornaram-se cada vez mais comuns

no cotidiano da população, contribuindo para automatizar tarefas, reduzir a necessidade de in-

tervenção humana e minimizar falhas operacionais. Estes sistemas são baseados em arquite-

turas de redes neurais artificiais inspiradas no funcionamento do cérebro humano, compostas

por múltiplas camadas ocultas que simulam sinapses neurais e realizam cálculos matemáti-

cos em paralelo para transformar entradas (como imagens ou textos) em saídas interpretáveis

(GOODFELLOW; BENGIO; COURVILLE, 2016).

Entre os maiores desafios da Inteligência Artificial (IA), está o campo da visão compu-

tacional, mais especificamente o reconhecimento e o rastreamento de objetos em vídeos. Essa

subárea da IA busca capacitar máquinas a interpretarem o conteúdo visual de imagens e ví-

deos, com o objetivo de detectar e acompanhar, ao longo do tempo, objetos ou indivíduos em

movimento. Suas aplicações abrangem áreas como segurança pública, monitoramento urbano,

controle de acesso (WEI et al., 2020), varejo e marketing comportamental (JUNIOR; MARTINI,

2019), sistemas de transporte inteligentes e saúde pública (SILVA, 2022), por exemplo, para

análise de fluxo em hospitais ou acompanhamento de pacientes com distúrbios de mobilidade

(YADAV et al., 2022).

Modelos modernos permitem, além da detecção de indivíduos, seu reconhecimento com

base em características visuais, mesmo diante de ambientes com múltiplas câmeras, ilumina-

ção variável ou alta densidade populacional. Técnicas como detecção de objetos (por exemplo,

o algoritmo YOLO — You Only Look Once, que divide imagens em grades e identifica objetos

em tempo real) (REDMON et al., 2016), rastreamento multi-objetos (como o DeepSORT, que

combina informações espaciais com features visuais para acompanhar indivíduos ao longo de

sequências (WOJKE; BEWLEY; PAULUS, 2017)) e reidentificação de pessoas, que utiliza veto-

res numéricos chamados embeddings para reconhecer a mesma pessoa em diferentes contex-

tos (como o modelo OSNet em (ZHOU et al., 2019)), são frequentemente utilizadas em conjunto

para garantir que uma mesma pessoa seja reconhecida ao longo de diferentes momentos e ce-

nas (MCLAUGHLIN; RINCON; MILLER, 2016).

Apesar do avanço dessas soluções, sua adoção ainda é limitada pela complexidade

técnica envolvida em sua implementação. Muitos dos frameworks existentes exigem conheci-

mentos especializados em aprendizado profundo, engenharia de software e manipulação de

vídeo em tempo real, o que restringe sua aplicação a empresas com equipes altamente capa-

citadas. Além disso, o processo de treinamento de modelos próprios demanda poder compu-

10

tacional significativo e acesso a grandes bases de dados anotadas, o que inviabiliza o uso por

desenvolvedores independentes ou instituições de pequeno porte.

O sistema desenvolvido nesse Trabalho de Conclusão de Curso utiliza modelos previa-

mente treinados, com o intuito de facilitar sua aplicação em contextos diversos, como segurança

urbana, empresas e ambientes domésticos. A implementação visa democratizar o acesso a

essa tecnologia, unindo conceitos de processamento de vídeo, aprendizado de máquina e de-

senvolvimento web em uma solução funcional e intuitiva.

Adicionalmente, nota-se uma escassez de programas públicos que ofereçam suporte

eficiente para reconhecimento de pessoas por imagem ou vídeo. Quando existentes, essas

ferramentas costumam ser mal documentadas, desatualizadas ou de difícil integração com sis-

temas modernos. Esta pesquisa busca preencher essa lacuna, utilizando modelos pré-treinados

e frameworks de código aberto, como YOLOv11 (REDMON et al., 2016), OSNet (ZHOU et al.,

2019) e FastAPI (RAMíREZ, 2023), para simplificar a adoção da tecnologia mesmo por usuários

sem formação em IA.

Cabe destacar que, por lidar com dados sensíveis como imagens de pessoas, questões

como desempenho, acurácia e segurança são cruciais. A aplicação inclui criptografia de iden-

tificadores (por meio de Advanced Encryption Standard a fim de proteger a privacidade dos

usuários, manter a estrutura de dados e mitigar riscos de ataques ou uso indevido das informa-

ções. A interface fora concebida de forma clara e segura, promovendo facilidade de uso sem

comprometer a proteção dos dados.

Ao final, espera-se obter um protótipo funcional de API que permita rastrear indivíduos

em vídeos com o uso de IA, com possibilidade de extensão futura para funcionalidades como

alertas em tempo real, reconhecimento corporal, múltiplos alvos e dashboards analíticos.

1.1 Objetivos

1.1.1 Objetivo geral

Conduzir um estudo sobre técnicas de rastreamento de pessoas em vídeos, abrangendo

cenários de transmissão em tempo real e por upload, mediante o desenvolvimento de uma

plataforma para experimentação e validação dos métodos investigados.

1.1.2 Objetivos específicos

• Investigar e selecionar bases de dados e modelos de detecção, rastreamento e re-

identificação de pessoas que ofereçam bom desempenho em tempo real;

• Integrar os modelos selecionados em uma aplicação acessível via API;

11

• Permitir a inserção de identificadores personalizados para reconhecimento individual;

• Criar uma interface mínima para interação com o sistema, com foco em usabilidade e

segurança;

• Avaliar o desempenho do sistema em diferentes contextos (qualidade de vídeo, ilumi-

nação, número de indivíduos, métricas estatísticas);

• Implementar mecanismos de criptografia para garantir a privacidade dos dados dos

usuários;

• Documentar o sistema de forma clara, visando sua reutilização por outros pesquisado-

res e desenvolvedores.

1.2 Justificativa

O tema é de relevância no cenário contemporâneo, especialmente no contexto da cres-

cente urbanização, da digitalização de serviços e do aumento da demanda por soluções tecno-

lógicas voltadas à segurança, automação e gestão inteligente de espaços. O uso de sistemas de

rastreamento e reconhecimento de pessoas por vídeo tem potencial para impactar diretamente

áreas críticas como segurança pública, cidades inteligentes, controle de acesso, logística, va-

rejo, saúde e ambientes corporativos (MELO; SERRA, 2022).

Em meio a esse panorama, destaca-se a dificuldade de acesso a ferramentas que pos-

sibilitem a implementação de tais sistemas de forma prática e acessível. As soluções atual-

mente disponíveis para rastreamento e identificação de pessoas por vídeo são, em sua maioria,

restritas a grandes empresas ou instituições com equipes altamente especializadas, uma vez

que exigem domínio técnico em aprendizado profundo, Redes neurais convolucionais, do inglês

Convolutional Neural Network) (RNC), visão computacional e manipulação de fluxos de vídeo

em tempo real. Essa barreira tecnológica restringe a adoção mais ampla da IA, impedindo que

pesquisadores, pequenas empresas e até mesmo desenvolvedores experientes — mas não

especializados em IA — consigam criar suas próprias soluções personalizadas (ALMASAWA;

ELREFAEI; MORIA, 2019).

Além disso, falta no mercado um ecossistema sólido de sistemas públicos bem docu-

mentados que permitam integração rápida com outros programas já existentes, o que limita o

uso prático de IAs em vídeo em contextos fora do meio corporativo. Esta pesquisa responde

diretamente a essa lacuna, implementando um sistema robusto, adaptável e fácil de usar, que

permita a qualquer pessoa — com ou sem conhecimento profundo em IA — implementar siste-

mas de rastreamento com segurança e eficiência.

Ao desenvolver um programa acessível, customizável e de fácil integração, este traba-

lho visa democratizar o acesso à tecnologia de rastreamento por vídeo baseada em IA. Assim,

permitindo que diferentes perfis de usuários — incluindo pesquisadores, desenvolvedores web

12

e profissionais de Tecnologia da Informação (TI) — possam aplicar essas técnicas sem a ne-

cessidade de treinar modelos do zero ou compreender toda a complexidade dos algoritmos

subjacentes. O programa também se destaca por abordar um ponto sensível no desenvolvi-

mento de sistemas de monitoramento: a proteção da privacidade e a segurança da informação.

Por isso, o sistema incorpora práticas como criptografia de embeddings e uma interface clara e

funcional, com foco em confiabilidade e proteção dos dados sensíveis dos usuários.

Adicionalmente, a pesquisa está alinhada aos princípios de viabilidade técnica e apli-

cabilidade prática. Existem bibliotecas e frameworks consolidados no ecossistema de código

aberto — como OpenCV, YOLO, OSNet e Flask/FastAPI — que podem ser aproveitados para

estruturar uma solução funcional dentro do tempo e dos recursos disponíveis no desenvolvi-

mento de um trabalho de conclusão de curso.

Por fim, a implementação é também motivada por um interesse pessoal da autora nas

áreas de aprendizado de máquina e desenvolvimento web. Trata-se, portanto, de uma oportu-

nidade de aplicar conhecimentos adquiridos ao longo da formação acadêmica em um desafio

real, que une teoria e prática e contribui tanto para o avanço pessoal quanto para o debate e a

produção de conhecimento dentro da área de computação aplicada.

13

2 APRENDIZADO DE MÁQUINA

A Inteligência Artificial é um campo da ciência da computação que busca desenvolver

sistemas capazes de executar tarefas que normalmente exigiriam inteligência humana, como

percepção visual, reconhecimento de padrões, tomada de decisões e processamento de lingua-

gem natural. Entre os principais subcampos da IA, destaca-se o aprendizado de máquina, que

permite que os sistemas aprendam padrões e tomem decisões com base em dados, sem serem

explicitamente programados para cada tarefa específica (GOODFELLOW; BENGIO; COUR-

VILLE, 2016).

Nesse contexto, uma subárea da Inteligência Artificial é o aprendizado de máquina apli-

cado a problemas de visão computacional. Este, por sua vez, possui uma vertente ainda mais

especializada, o aprendizado profundo, descrito com mais detalhes na Seção 2.1, que se baseia

em arquiteturas conhecidas como RNC. Essas redes são compostas por múltiplas camadas in-

terconectadas (GOODFELLOW; BENGIO; COURVILLE, 2016).

Para isso, as redes neurais convolucionais são as arquiteturas mais utilizadas. Elas fo-

ram projetadas para processar dados que possuem uma estrutura de matriz, como imagens,

e são compostas por filtros capazes de capturar padrões locais, como bordas, texturas e for-

mas (GOODFELLOW; BENGIO; COURVILLE, 2016). À medida que a informação percorre as

camadas da rede, essas representações locais são combinadas em padrões mais complexos,

permitindo que o modelo reconheça objetos inteiros ou identifique características específicas

de uma pessoa.

Ao final da construção de uma rede neural convolucional, tem-se como resultado um

conjunto de números que representam características extraídas das imagens. A qualidade

dessa representação é diretamente dependente do modelo escolhido, da diversidade do con-

junto de dados utilizado no treinamento e das técnicas aplicadas, como Deep Metric Learning,

Local Feature Learning e o uso de GANs para aumento de dados.

2.1 Aprendizado Profundo

O Deep Learning, ou aprendizado profundo, é uma subárea do aprendizado de má-

quina que tem como objetivo construir modelos computacionais capazes de aprender repre-

sentações hierárquicas de dados, utilizando arquiteturas compostas por múltiplas camadas de

processamento não linear, conhecidas como redes neurais profundas (GOODFELLOW; BEN-

GIO; COURVILLE, 2016).

O termo profundo deve-se à presença de várias camadas sucessivas de transformação

dos dados, onde cada camada aprende uma representação progressivamente mais abstrata de

informação.

Historicamente, o conceito de redes neurais existe desde a década de 1950, com o mo-

delo de perceptron desenvolvido por Frank Rosenblatt. Porém, as primeiras arquiteturas de re-

14

des neurais convolucionais apresentavam várias limitações práticas, como, por exemplo, a falta

de recursos computacionais precedentes à época (GOODFELLOW; BENGIO; COURVILLE,

2016). Foi apenas a partir de 2006, com o desenvolvimento de técnicas como o pré-treinamento

não supervisionado e, posteriormente, com a popularização de Unidade de Processamento

Gráfico (GPU do inglês Graphic Process Unit) (GPU) e de algoritmos como a retropropagação,

que o aprendizado profundo passou a alcançar resultados expressivos em problemas reais.

O aprendizado profundo se tornou uma abordagem central em diversos ramos da Inteli-

gência Artificial, especialmente em visão computacional, processamento de linguagem natural,

reconhecimento de fala e jogos, devido à sua capacidade de aprender diretamente dos dados,

dispensando engenharia manual de features, aplicando suas próprias regras para medir o peso

dessas features.

Arquitetura de uma Rede Neural Profunda

Uma rede neural profunda é composta por um conjunto de unidades computacionais

chamadas de neurônios artificiais ou nós, organizados em múltiplas camadas. Essas cama-

das podem ser divididas em três tipos principais: camada de entrada (input), camadas ocultas

(hidden layers) e camada de saída (output).

Figura 1 – Exemplo de arquitetura de rede neural profunda com múltiplas camadas ocultas.

Fonte: Deep Learning (GOODFELLOW; BENGIO; COURVILLE, 2016).

A Figura 1 ilustra uma arquitetura típica de rede neural profunda com múltiplas cama-

das ocultas. Cada neurônio artificial recebe um conjunto de entradas durante o treinamento,

as quais são multiplicadas por pesos associados a cada conexão. Em seguida, essas entradas

15

ponderadas são somadas a um viés e passam por uma função de ativação, como a ReLU (Rec-

tified Linear Unit), Sigmoid ou Tanh, que introduz não-linearidade ao sistema (GOODFELLOW;

BENGIO; COURVILLE, 2016). Essa característica permite que a rede seja capaz de modelar

relações complexas entre os dados.

Parâmetros e Hiperparâmetros

O desempenho e o comportamento de uma rede neural profunda durante o treinamento

e a inferência dependem de diversos parâmetros e hiperparâmetros que influenciam desde

o ajuste dos pesos até a estabilidade do aprendizado. A seguir, são descritos os principais

hiperparâmetros utilizados no desenvolvimento de modelos de aprendizado profundo.

• Número de épocas: Quantidade de vezes que o modelo percorrerá o conjunto de trei-

namento completo. Durante cada época, o modelo realiza sucessivas atualizações dos

seus parâmetros (pesos e viés), com o objetivo de reduzir o erro em relação aos valores

esperados. Normalmente, o treinamento de redes profundas requer múltiplas épocas

para que o modelo consiga generalizar bem os padrões aprendidos (GOODFELLOW;

BENGIO; COURVILLE, 2016);

• Viés: Parâmetro adicional presente em cada neurônio de uma rede neural, que tem

como função ajustar a saída do neurônio mesmo quando todas as entradas são zero.

O viés também é ajustado na função de gradiente descendente, e é comumente inici-

alizado com valores pequenos e aleatórios (GOODFELLOW; BENGIO; COURVILLE,

2016);

• Taxa de aprendizado: A taxa de aprendizado é um hiperparâmetro fundamental que

controla a magnitude da atualização dos pesos da rede a cada iteração do processo

de treinamento. Ela determina o quão rápido ou devagar o modelo ajusta os seus

parâmetros em resposta ao gradiente da função de perda. Uma taxa de aprendizado

muito alta pode fazer com que o modelo oscile ou até mesmo divirja, nunca alcançando

um mínimo da função de perda. Por outro lado, uma taxa muito baixa pode tornar o

treinamento extremamente lento, além de aumentar o risco de o modelo ficar preso em

mínimos locais (GOODFELLOW; BENGIO; COURVILLE, 2016);

• Batch size: O batch size refere-se ao número de amostras de dados utilizadas para

calcular o gradiente e atualizar os pesos da rede a cada iteração de treinamento. Em

vez de atualizar os pesos após cada amostra individual (stochastic gradient descent)

ou apenas ao final de uma época (batch gradient descent), utiliza-se o mini-batch gra-

dient descent, que realiza as atualizações após processar pequenos lotes de amostras.

Essa abordagem equilibra o custo computacional e a estabilidade do gradiente, sendo

uma prática comum o uso de tamanhos de lote entre 16, 32, 64 ou 128, dependendo

16

dos recursos computacionais disponíveis e do tamanho do dataset (GOODFELLOW;

BENGIO; COURVILLE, 2016);

• Função de perda: A função de perda é responsável por quantificar a discrepância en-

tre a saída prevista pelo modelo e os valores reais. Durante o treinamento, o objetivo

da rede neural é minimizar essa discrepância. Existem diferentes funções de perda, e

a escolha depende do tipo de tarefa. Para problemas de classificação, por exemplo, é

comum utilizar a Cross-Entropy Loss, enquanto para regressão, funções como Mean

Squared Error (MSE) são mais adequadas. A função de perda orienta o cálculo dos

gradientes durante o processo de retropropagação, influenciando diretamente na atu-

alização dos parâmetros do modelo (GOODFELLOW; BENGIO; COURVILLE, 2016);

• Otimização: O algoritmo de otimização é o método utilizado para minimizar a função

de perda ajustando os pesos e o viés da rede de forma eficiente. O mais tradicional é

o Gradient Descent, mas versões mais avançadas são amplamente utilizadas devido à

sua capacidade de acelerar a convergência e lidar melhor com problemas como platôs

de gradiente e ravinas. Entre os otimizadores mais populares destacam-se:

– SGD Stochastic Gradient Descent : Realiza atualizações com base em lotes

pequenos, sendo simples, mas eficiente;

– Adam (Adaptive Moment Estimation): Ajusta automaticamente a taxa de

aprendizado de cada parâmetro com base em momentos do gradiente, pro-

porcionando uma convergência mais rápida e estável;

– RMSprop: Uma variação que normaliza os gradientes pelo quadrado da mé-

dia das magnitudes recentes, sendo eficaz em problemas com gradientes es-

parsos (GOODFELLOW; BENGIO; COURVILLE, 2016).

A escolha do otimizador influencia diretamente a eficiência do treinamento e a quali-

dade da solução final.

• Função de ativação: A função de ativação é responsável por introduzir não-

linearidades no modelo, permitindo que a rede neural seja capaz de aprender relações

complexas entre as entradas e as saídas. Sem uma função de ativação não-linear, a

rede seria apenas uma combinação linear de suas entradas, independentemente da

quantidade de camadas, impedindo o aprendizado de padrões complexos, como para

reconhecimento de imagens.

As funções de ativação mais comuns incluem:

– ReLU (Rectified Linear Unit): Define a saída como zero para valores negati-

vos e linear para positivos, sendo a mais utilizada em redes profundas devido

à sua simplicidade e eficácia em evitar o problema do gradiente desvanecente;

17

– Sigmoid: Comprime os valores de saída para um intervalo entre 0 e 1, muito

usada em problemas de classificação binária, mas com risco de saturação

para entradas muito altas ou muito baixas;

– Tanh (Tangente Hiperbólica): Similar à sigmoid, mas com saída entre -1 e 1,

o que pode proporcionar melhor centralização dos dados em algumas situa-

ções (GOODFELLOW; BENGIO; COURVILLE, 2016).

Esses conceitos serão explorados em detalhes na Seção 3, onde serão definidos os

valores específicos utilizados em cada etapa do desenvolvimento da solução desenvolvida.

Processo de Treinamento

O treinamento de uma rede neural profunda consiste em dois ciclos principais: a passa-

gem direta e a retropropagação.

Durante a passagem direta, os dados de entrada são processados camada por camada,

da entrada até a saída da rede. Cada neurônio artificial realiza uma combinação linear das en-

tradas recebidas, ponderadas pelos seus respectivos pesos, e adiciona um termo de viés. O

resultado dessa combinação é então passado por uma função de ativação, como a ReLU ou a

Sigmoid, que introduz não-linearidade ao modelo, permitindo que a rede aprenda representa-

ções complexas (GOODFELLOW; BENGIO; COURVILLE, 2016).

Matematicamente, o funcionamento de cada camada pode ser descrito pela Equação 1:

𝑎(𝑙) = 𝑓
(︀
𝑊 (𝑙) · 𝑎(𝑙−1) + 𝑏(𝑙)

)︀
(1)

Onde:

• 𝑎(𝑙) representa a saída da camada 𝑙;

• 𝑊 (𝑙) são os pesos da camada 𝑙;

• 𝑏(𝑙) é o vetor de vieses;

• 𝑓 é a função de ativação escolhida para a camada.

Ao final da última camada, a rede produz uma predição ou saída (𝑦), que é comparada

ao valor real (𝑦) por meio de uma função de perda, como Cross-Entropy Loss para tarefas

de classificação ou Mean Squared Error para regressão. Essa função calcula o erro entre a

predição e o valor esperado.

Em seguida, inicia-se a retropropagação, em que o erro calculado é propagado de volta

através das camadas da rede. O algoritmo de retropropagação, proposto originalmente por Ru-

melhart, Hinton e Williams (1986), calcula os gradientes parciais da função de perda em relação

18

aos pesos de cada camada, utilizando o método de diferenciação conhecido como regra da

cadeia do cálculo diferencial (GOODFELLOW; BENGIO; COURVILLE, 2016).

Esses gradientes são então utilizados por um algoritmo de otimização, como o SGD,

Adam ou RMSprop, para ajustar os pesos da rede, reduzindo gradualmente o erro nas próximas

iterações (BERLYAND; JABIN, 2023).

O processo de treinamento repete a passagem direta e a retropropagação para múltiplos

mini-batches até completar uma época, que corresponde a uma varredura completa por todo o

conjunto de treinamento.

O ciclo completo é repetido ao longo de múltiplas épocas, enquanto o desempenho da

rede é monitorado por meio de métricas como acurácia, precisão, recall e perda de validação.

Durante o treinamento, hiperparâmetros como a taxa de aprendizado, o batch size, o número

de épocas e o tipo de otimizador têm influência direta na velocidade de convergência e na

qualidade do modelo final.

Durante o processo de treinamento, técnicas de regularização também são essenciais

para evitar o fenômeno conhecido como sobreajuste, no qual a rede aprende padrões muito

específicos dos dados de treinamento e apresenta baixo desempenho em dados não vistos

anteriormente.

Uma das estratégias mais utilizadas para mitigar esse problema é o Dropout, proposto

por Srivastava et al. (2014). O Dropout consiste em desativar aleatoriamente uma porcentagem

dos neurônios durante cada iteração de treinamento, forçando a rede a não depender exces-

sivamente de nenhum caminho específico para a propagação de informação. Isso incentiva a

formação de representações mais robustas e generalizáveis. O valor típico para o parâmetro

de Dropout varia entre 0,2 e 0,5, significando que entre 20% e 50% dos neurônios podem ser

temporariamente desativados por iteração (SRIVASTAVA et al., 2014).

Além do Dropout, outra prática comum durante o treinamento de redes neurais profun-

das é o uso de Data Augmentation. Esta técnica visa aumentar a diversidade dos dados de

entrada por meio de transformações artificiais aplicadas ao conjunto de dados original. En-

tre as formas mais comuns de Data Augmentation em visão computacional estão: rotações,

inversões horizontais, variações de brilho, recortes aleatórios e alterações de escala (GOOD-

FELLOW; BENGIO; COURVILLE, 2016). O objetivo é tornar o modelo mais robusto a variações

que podem ocorrer nas condições reais de uso, como mudanças de iluminação, perspectiva ou

oclusões parciais.

Combinadas, as estratégias de otimização, regularização (como Dropout) e Data Aug-

mentation contribuem para o desenvolvimento de um modelo mais preciso e com melhor capa-

cidade de generalização ao lidar com novas amostras de dados.

19

2.2 Detecção de pessoas via aprendizado profundo

Um dos elementos necessários para alguns problemas de visão computacional é a ge-

ração automática de Área de interesse (ROI do inglês Region of Interest) (ROI)s, também co-

nhecidas como bounding boxes. Essas bounding boxes são áreas específicas dentro de uma

imagem ou vídeo onde se presume haver informação relevante — neste caso, a presença de

uma pessoa. Para que sistemas automatizados funcionem corretamente, é necessário que con-

sigam identificar, sem intervenção humana, onde essas pessoas estão no vídeo. Essa tarefa

pode ser realizada por modelos de detecção, como por exemplo, o You Only Look Once (RED-

MON et al., 2016), que segmentam os quadros do vídeo em tempo real, indicando com precisão

onde os objetos — pessoas, neste caso — estão localizados.

Arquitetura YOLO para Detecção de Objetos

O algoritmo YOLO é uma das arquiteturas mais conhecidas e utilizadas na tarefa de

detecção de objetos em tempo real. Proposto por Redmon et al. (2016), o YOLO surgiu com o

objetivo de resolver limitações de modelos anteriores que, embora apresentassem alta acurá-

cia, sofriam com elevado tempo de processamento, tornando-os inviáveis para aplicações com

restrições de latência, como vídeos ao vivo.

A Figura 2 ilustra uma arquitetura da rede neural introduzida no YOLO.

Figura 2 – Arquitetura da rede convolucional usada no modelo YOLO.

Fonte: You Only Look Once: Unified, Real-Time Object Detection (REDMON et al., 2016)

Enquanto arquiteturas tradicionais de detecção de objetos operam por meio de um pi-

peline de múltiplas etapas — geralmente incluindo a geração de regiões propostas, extração de

características para cada uma dessas regiões e posterior classificação — o YOLO adota uma

abordagem de regressão direta, tratando a detecção como um único problema de mapeamento

de entrada para saída (REDMON et al., 2016).

O funcionamento do YOLO pode ser descrito da seguinte forma: a imagem de entrada é

dividida em uma grade de células de tamanho fixo. Para cada célula da grade, o modelo prevê

simultaneamente:

20

• As coordenadas das bounding boxes — incluindo posição (𝑥, 𝑦) e dimensões (largura

e altura);

• A classe (ou tipo) do objeto contido naquela caixa (ex.: pessoa, carro, bicicleta);

• A confiança da detecção — um valor numérico que expressa o grau de certeza da rede

de que a caixa contém um objeto e que esse objeto pertence à classe prevista.

Essa estrutura permite que o YOLO realize a detecção de todos os objetos de uma

imagem em uma única execução da rede neural, sem a necessidade de percorrer múltiplas

regiões de forma sequencial. Em termos práticos, isso resulta em uma redução significativa do

tempo de processamento, permitindo a detecção em tempo real, mesmo em vídeos com altas

taxas de quadros por segundo.

Figura 3 – Formação de Bounding Boxes e classificação de imagens com YOLO.

Fonte: You Only Look Once: Unified, Real-Time Object Detection (REDMON et al., 2016)

A saída final do YOLO consiste em uma série de caixas delimitadoras com suas res-

pectivas classes e níveis de confiança, permitindo ao sistema identificar múltiplos objetos em

diferentes posições de uma única imagem ou quadro de vídeo. Essa característica faz com que

o YOLO seja uma das principais escolhas em aplicações que exigem rapidez, como vigilância

por vídeo, direção autônoma e análise de fluxo de pessoas em tempo real (REDMON et al.,

2016).

Desde a sua primeira versão, o YOLO passou por diversas atualizações significativas.

Versões como o YOLOv5, YOLOv8 e YOLOv11 apresentam melhorias tanto em desempenho

quanto em acurácia, incorporando avanços como camadas de atenção, arquiteturas mais pro-

fundas e técnicas modernas de otimização (REDMON et al., 2016).

Enquanto o YOLO é amplamente utilizado para detecção de objetos em tempo real,

incluindo pessoas, ele não é projetado para reidentificação. Então, para reidentificar indivíduos,

é necessário extrair embeddings que capturem características únicas além da simples detecção.

21

Portanto, após a detecção inicial com o YOLO, é comum empregar modelos especiali-

zados em reidentificação para extrair embeddings e realizar a correspondência entre indivíduos

ao longo do tempo e em diferentes câmeras.

2.3 Reidentificação de Pessoas (Person Re-Identification)

A Reidentificação de Pessoas é uma tarefa dentro da visão computacional que consiste

em reconhecer o mesmo indivíduo em diferentes cenas, câmeras ou momentos, mesmo que

a pessoa esteja com variações de ângulo, iluminação ou postura (ALMASAWA; ELREFAEI;

MORIA, 2019).

Após a detecção, é necessário o processamento com Inteligência Artificial para a extra-

ção de características únicas dessas pessoas detectadas. Essas características, chamadas de

features ou embeddings, são vetores numéricos que codificam informações visuais relevantes

de cada indivíduo — como tipo de roupa, cor, estrutura corporal e outros padrões que, juntos,

permitem distinguir uma pessoa de outra. Esses vetores são fundamentais para reconhecer o

mesmo indivíduo em câmeras diferentes, em momentos distintos, mesmo que ele não esteja

sempre na mesma posição ou iluminação. Diversas abordagens têm sido desenvolvidas para

gerar embeddings eficazes para tal objetivo, e dentro elas, incluem-se:

• Aprendizado Métrico Profundo:

– Utiliza redes neurais treinadas com funções de perda específicas, como a

triplet loss, para mapear imagens de pessoas em um espaço vetorial onde

indivíduos semelhantes estão próximos e diferentes estão distantes;

– É eficaz na captura de relações de similaridades e diferenças entre indivíduos

(LI et al., 2023).

• Aprendizado de Características Locais:

– Foca na extração de partes específicas do corpo (por exemplo, cabeça, om-

bro, joelho e pé) para gerar embeddings mais robustos e variações de pose e

oclusões;

– Modelos como o PCB (Part-based Convolutional Baseline) dividem a imagem

em segmentos horizontais e extraem características de cada parte (WU et al.,

2024).

• Redes Adversárias Generativas (GANs):

– Treina duas redes neurais generativas para competirem entre si e gerar no-

vos dados mais autênticos a partir de um determinado conjunto de dados de

treinamento;

22

– Utilizadas para gerar imagens sintéticas ou transformar imagens existentes,

ajudando a modelar variações de aparência e melhorar a generalização dos

embeddings (Amazon Web Services, 2023).

• Aprendizado de Características Sequenciais:

– Explora informações temporais em sequências de vídeo, utiliza redes recor-

rentes ou mecanismos de atenção para capturar padrões dinâmicos de movi-

mento e comportamento;

– Essa abordagem é valiosa para reidentificação em vídeos, onde o movimento

pode fornecer pistas adicionais (AL-JABERY et al., 2020).

O processo de Re-ID geralmente é composto por três etapas principais:

1. Extração de Embeddings: Após a detecção da pessoa, a bounding box é processada

por uma rede neural convolucional especializada, como a OSNet, para extrair um em-

bedding que representa as características visuais únicas daquele indivíduo (ZHOU et

al., 2019);

2. Comparação Vetorial: Através de uma métrica de distância (como a Euclidiana ou

Cosine Distance), o sistema compara o embedding da pessoa detectada com o em-

bedding de referência fornecido pelo usuário. Embeddings com menor distância são

considerados mais similares, permitindo a identificação da pessoa alvo (ALMASAWA;

ELREFAEI; MORIA, 2019);

3. Decisão de Identidade: Caso a distância calculada esteja abaixo de um limiar pre-

viamente definido, o sistema considera que a detecção corresponde ao indivíduo de

interesse.

Arquitetura OSNet para Re-ID

O OSNet é uma arquitetura de rede neural convolucional especializada na extração de

embeddings de imagens de pessoas. Seu diferencial está na capacidade de capturar infor-

mações em múltiplas escalas espaciais de forma simultânea, por meio de blocos chamados

Omni-Scale Blocks, que integram diferentes campos receptivos de convolução. Isso permite ao

modelo ser eficiente tanto na captura de detalhes locais (como textura de roupa) quanto de

contextos globais (como estrutura corporal) e temporais, no caso de capturas por conjuntos de

frames em vídeos (ZHOU et al., 2019). A Figura 4 ilustra a arquitetura típica do OSNet.

23

Figura 4 – Arquitetura convolucional usada no modelo Omni Scale.

Fonte: Omni-Scale Feature Learning for Person Re-Identification (ZHOU et al., 2019)

2.4 Estudos Relacionados

Este trabalho se insere dentre múltiplas linhas de pesquisa consolidadas na área de

ciência da computação. Está diretamente relacionado à área de reconhecimento facial e reiden-

tificação de pessoas, que estuda formas de identificar indivíduos por meio de características

visuais, com ou sem uso de biometria direta. Assim também com o campo da vigilância inteli-

gente, onde algoritmos analisam vídeos em tempo real para tomar decisões ou alertar opera-

dores sobre eventos de interesse.

Um exemplo significativo é o trabalho de Chen et al. (2018), que aplicou Deep Metric

Learning com a função de perda triplet loss para gerar embeddings discriminativos em tarefas

de reidentificação. Os autores demonstraram que esse método pode atingir alta acurácia ao

separar vetorialmente indivíduos distintos com eficácia, mesmo em grandes conjuntos de dados.

Já o modelo PCB, proposto por Sun et al. (2021), adota uma abordagem de aprendizado

local, segmentando a imagem em partes horizontais e extraindo características de cada uma

delas. Essa estratégia mostrou-se particularmente eficaz em cenários com variações de pose e

oclusão parcial, frequentemente encontradas em ambientes reais.

No contexto de melhoria de generalização e aumento da variabilidade visual, Karmakar

e Mishra (2021) introduziram o uso de GANs para gerar amostras sintéticas de pessoas. Isso

permitiu treinar modelos mais robustos mesmo com conjuntos de dados limitados, ampliando a

capacidade dos embeddings de generalizar para novos indivíduos.

Quanto à reidentificação em vídeos, McLaughlin, Rincon e Miller (2016) propuseram

uma rede recorrente convolucional (RRC) capaz de capturar padrões temporais para melhorar

24

a identificação de indivíduos em sequências contínuas. O modelo demonstrou que o uso de

informações temporais melhora significativamente o desempenho em comparação com aborda-

gens baseadas apenas em imagens estáticas.

Além disso, há outras pesquisas que merecem ser mencionadas em rastreamento de

multiobjetos, uma vertente da Inteligência Artificial que busca acompanhar simultaneamente

várias entidades em movimento ao longo do tempo, como o estudo de Bergmann, Meinhardt

e Leal-Taixe (2019) com o Tracktor++, que combina detecção com rastreamento baseado em

tracking by regression. Outro elo importante está com a detecção de anomalias em vídeo, como

ações suspeitas ou comportamentos fora do padrão, que utiliza muitos dos mesmos fundamen-

tos técnicos aqui abordados.

Por fim, estes estudos podem também tangenciar áreas mais aplicadas como engenha-

ria de software, especialmente no que diz respeito à criação de infraestrutura moderna de APIs

e interfaces web funcionais, que são essenciais para tornar as descobertas da Inteligência Arti-

ficial utilizáveis no mundo real, fora do ambiente restrito de laboratórios e grupos de pesquisa.

Além das contribuições acadêmicas em reidentificação e rastreamento, este trabalho

também tangencia discussões recentes em engenharia de software para sistemas baseados

em IA, especialmente no que se refere à produção de APIs modernas. Ramachandran (2024)

propõe um modelo de API IA-first, que integra o processamento vetorial e infraestrutura, otimi-

zando o uso de modelos de aprendizado de máquina em produção.

25

3 MATERIAIS E MÉTODOS

Nesse capítulo serão apresentados os materiais e métodos utilizados para o desenvol-

vimento de uma ferramenta end-to-end de rastreamento de pessoas baseada em Inteligência

Artificial, com o intuito de possibilitar a detecção e identificação de indivíduos em vídeos trans-

mitidos em tempo real ou por meio de arquivos enviados. A solução combina técnicas modernas

de visão computacional, como detecção de bounding boxes, extração de embeddings e com-

paração vetorial, de forma a reconhecer um indivíduo específico a partir de uma imagem de

referência fornecida pelo usuário.

A ferramenta é estruturada como uma API acessível, com conexão via protocolo web-

socket e suporte a requisições RESTful. Uma API RESTful é um estilo arquitetural para de-

senvolvimento de aplicações web que seguem os princípios do Protocolo de Transferência de

Hipertexto (HTTP, do inglês Hypertext Transfer Protocol) (HTTP), ou seja, é enviada uma soli-

citação de um cliente (ex.: um navegador) para um servidor, pedindo uma ação ou informação

(FIELDING, 2000).

O protocolo websocket, padronizado pela RFC 6455 (FETTE; MELNIKOV, 2011), é uma

tecnologia que permite comunicação bidirecional, persistente e em tempo real entre cliente e

servidor através de uma única conexão de Contexto de Protocolo de Texto (TPC do inglês Text

Context Protocol) (TCP).

Essa característica faz com que o WebSocket seja especialmente adequado para apli-

cações que necessitam de baixa latência e comunicação em tempo real, como sistemas de

transmissão de vídeo ao vivo ou monitoramento de dados contínuos.

A combinação de uma API RESTful e de um canal WebSocket proporciona uma arqui-

tetura flexível e escalável para o sistema de rastreamento de pessoas. Enquanto a API RESTful

permitirá operações pontuais, como o envio de imagens de referência ou vídeos armazenados,

o WebSocket garantirá a comunicação contínua e em tempo real para análise de transmissões

ao vivo. Uma visão geral do desenvolvimento pode ser observada na Figura 5.

O programa oferece um dashboard interativo para visualização dos resultados. Por meio

dessa interface, o usuário pode carregar uma imagem de uma pessoa de interesse e conec-

tar uma fonte de vídeo — seja por upload direto ou por streaming. A API é responsável por

identificar se, onde e quando o indivíduo-alvo aparece nos vídeos processados, retornando as

informações em formato Notação de Objetos JavaScript (JSON, do inglês JavaScript Object

Notation) (JSON) e visualizando os dados em tempo real por meio do painel web.

3.1 Materiais

O desenvolvimento da solução neste Trabalho de Conclusão de Curso exige a utilização

de um conjunto diversificado de ferramentas, frameworks, linguagens de programação e servi-

ços de infraestrutura. A seguir, apresentam-se os principais materiais que foram empregados ao

26

Figura 5 – Visão geral do sistema Watch Me.

Fonte: Autoria própria.

longo das etapas de desenvolvimento e implementação da API para rastreamento de pessoas

com inteligência artificial.

• Figma: O Figma é uma ferramenta de prototipação e design de interfaces amplamente

utilizada no desenvolvimento de aplicações web e mobile. Ele permite a criação de um

design system estruturado, proporcionando melhor organização visual e facilitando a

implementação da experiência do usuário (UX) e da interface do usuário (UI). O Figma

é multiplataforma e pode ser acessado via navegador, além de possuir versões para

Windows e MacOS (FIGMA, 2025);

• DBDiagram: Para a modelagem inicial do banco de dados relacional, foi utilizada a

ferramenta online DBDiagram. Essa plataforma permite a criação rápida de diagramas

entidade-relacionamento (ER) com sintaxe simplificada, possibilitando a exportação

27

para SQL ou integração com outras ferramentas de desenvolvimento de banco de da-

dos (DBDIAGRAM, 2025);

• Git e GitHub: O controle de versão do código foi realizado por meio do Git, utilizando

o repositório remoto hospedado no GitHub. Essa combinação de ferramentas permitirá

o versionamento eficiente do programa, o trabalho colaborativo, e a implementação de

fluxos de desenvolvimento como branching e pull requests, além de garantir o histórico

de alterações e rastreabilidade das modificações (CHACON; STRAUB, 2014);

• Notion: Para o gerenciamento das sprints e organização das tarefas, foi utilizado o

Notion. Essa ferramenta permite a criação de quadros Kanban, listas de tarefas e a

documentação de decisões técnicas, promovendo a gestão ágil do desenvolvimento

(NOTION, 2025);

• Docker: Para garantir a portabilidade e a reprodutibilidade do ambiente de desenvolvi-

mento e produção, foi utilizada a tecnologia de containers Docker. O banco de dados

será containerizado, possibilitando sua implantação em diferentes servidores ou má-

quinas virtuais de forma rápida e consistente (DOCKER, 2025);

• Sphinx: Para a documentação técnica da API e dos módulos de IA, foi utilizado o

Sphinx, um gerador de documentação em formato estático, compatível com o padrão

reStructuredText. O Sphinx permitirá a geração de documentos navegáveis, incluindo

exemplos de uso, endpoints disponíveis e descrições detalhadas do funcionamento

interno da aplicação (SPHINX, 2025);

• PostgreSQL: Armazenamento das informações de identificação, embeddings de re-

ferência, logs de processamento e dados de usuários da aplicação (POSTGRESQL,

2025);

• OpenAPI (Swagger): O Swagger permite que a estrutura de cada endpoint da API

— incluindo parâmetros de entrada, formatos de resposta, códigos de status HTTP e

exemplos de requisição — seja descrita de forma legível tanto por humanos quanto por

máquinas. Ao adotar o Swagger, foi possível gerar automaticamente uma interface in-

terativa via navegador, onde desenvolvedores podem testar os endpoints diretamente,

enviar requisições e visualizar as respostas em tempo real, sem a necessidade de criar

um cliente manual (OPENAPI, 2025).

Frontend

A interface visual da aplicação foi desenvolvida utilizando:

• React Native: Permite o desenvolvimento de aplicações móveis multiplataforma com

código único (NATIVE, 2025);

28

• Expo: Simplifica o processo de construção, empacotamento e execução do aplicativo

(EXPO, 2025);

• Tailwind CSS: Através do pacote NativeWind, que permite aplicar estilos utilitários de

forma programática em React Native (NATIVEWIND, 2025).

3.1.1 Desenvolvimento da API RESTful para regra de negócio

Para o desenvolvimento da API RESTful, foram usados os seguintes frameworks, lin-

guagens e ferramentas:

• TypeScript: Adiciona tipagem estática ao JavaScript, tornando o desenvolvimento

mais seguro e reduzindo erros em tempo de compilação (TYPESCRIPT, 2025);

• Fastify: Framework principal para o desenvolvimento da API RESTful. Reconhecido

por sua alta performance e baixo consumo de recursos (FRAMEWORK, 2025);

• Objection.js e Knex: Respectivamente, ORM baseado em Modelos e construtor de

consultas SQL. Essa combinação facilitou a manipulação de dados no banco relacional

escolhido, garantindo flexibilidade e escalabilidade (OBJECTION.JS, 2025; KNEX.JS,

2025);

• Zod: Ferramenta de validação de schemas baseada em TypeScript, que permite defi-

nir, de forma tipada e declarativa, as estruturas esperadas de entrada para cada end-

point (INFERENCE, 2025);

• JWT: Ou JSON Web Token, é um padrão aberto (RFC 7519) que define uma maneira

compacta e autônoma de transmitir informações de forma segura entre duas partes.

Ele é comumente usado para autenticação, pois permite que um servidor verifique

a identidade de um usuário e retorne um token que este aplicativo pode usar para

acessar recursos protegidos sem precisar enviar as credenciais novamente a cada

solicitação.

3.1.2 Desenvolvimento das arquiteturas de aprendizado profundo

Bases de Dados para Treinamento e Testes

Para o treinamento e avaliação dos modelos, foram utilizadas bases de dados públicas

amplamente reconhecidas na área de reidentificação de pessoas e detecção de objetos, como:

• DukeMTMC-VidReID: Para treinamento e avaliação dos modelos de reidentificação

(ZHENG; ZHENG; YANG, 2017). Ela foi derivada do DukeMTMC, um dataset original

29

de múltiplas câmeras para vigilância, com anotações adaptadas para tarefas de Re-ID

por vídeo. O DukeMTMC-VidReID contém cerca de 1.812 identidades únicas, distri-

buídas em 4.832 imagens, capturadas por 8 câmeras diferentes. O conjunto de dados

é dividido em 16.522 imagens para treinamento, 2.196 para consulta e treino e 2.636

para a galeria de teste. Uma das principais características do DukeMTMC-VidReID é a

grande variação de ângulos de câmera, iluminação e poses, o que o torna um bench-

mark desafiador e amplamente adotado em pesquisas recentes de Re-ID. A base foi

organizada em três conjuntos:

1. 70% para Treinamento: Imagens usadas para atualização dos pesos do OS-

Net;

2. 15% para Validação: Usadas para ajuste de hiperparâmetros e evitar sobrea-

juste;

3. 15% para Teste: Exclusivas para avaliação final da acurácia da detecção.

• COCO: Para tarefas relacionadas à detecção de pessoas no vídeo (LIN et al., 2014).

O COCO (Common Objects in Context) é uma das bases de dados mais utilizadas

no treinamento de modelos de detecção de objetos, incluindo pessoas. Ele contém

mais de 330.000 imagens, das quais cerca de 200.000 são anotadas com mais de 1,5

milhão de instâncias de objetos. Ao todo, o dataset abrange 80 categorias de objetos.

O COCO oferece anotações detalhadas em formato JSON, incluindo as coordenadas

de bounding boxes, máscaras de segmentação e pontos-chave, sendo amplamente

utilizado em benchmarks de detecção, segmentação e reconhecimento de pessoas. A

base foi organizada em três conjuntos:

1. 70% para Treinamento: Imagens usadas para atualização dos pesos do YO-

LOv11;

2. 15% para Validação: Usadas para ajuste de hiperparâmetros e evitar sobrea-

juste;

3. 15% para Teste: Exclusivas para avaliação final da acurácia da detecção.

Essas bases foram escolhidas por sua diversidade, qualidade e ampla adoção em ben-

chmarks acadêmicos.

Ambas as proporções seguem recomendações da comunidade científica, garantindo

volume suficiente de dados para ajuste de hiperparâmetros sem comprometer a avaliação final.

Bibliotecas e Frameworks de aprendizado de máquina

Foram utilizadas as seguintes bibliotecas e frameworks para o treinamento dos modelos:

• YOLOv11: Modelo para detecção de pessoas nos vídeos (ULTRALYTICS, 2024);

30

• PyTorch: Framework de aprendizado profundo para treinamento e inferência (PY-

TORCH, 2025);

• Ultralytics YOLO: Implementação popular e otimizada do YOLOv11, com suporte a

Python (ULTRALYTICS, 2025);

• CUDA e cuDNN (opcional): Para o treinamento realizado em GPU, foram necessá-

rias as bibliotecas CUDA Toolkit e cuDNN para aceleração computacional (CORPO-

RATION, 2025a; CORPORATION, 2025b);

• OSNet (Omni-Scale Network): Modelo para extração de embeddings e reidentificação

de indivíduos (ZHOU et al., 2019);

• Torchreid: Biblioteca open-source para experimentos de Re-ID, contendo implementa-

ções pré-treinadas de modelos como OSNet, PCB e AGW (TORCHREID, 2025);

• NumPy e SciPy: Bibliotecas auxiliares para manipulação de vetores, arrays e cálculo

de distâncias (NUMPY, 2025; SCIPY, 2025).

Ferramentas para desenvolvimento da API para comunicação com os modelos treinados

• Python: Linguagem amplamente utilizada na área de Inteligência Artificial e aprendi-

zado profundo, devido à sua extensa gama de bibliotecas especializadas para apren-

dizado de máquina (Python Software Foundation, 2025);

• FastAPI: Framework leve e de alta performance em Python, usado para a exposição

da API pós comunicação com os modelos e para a conexão websocket (RAMíREZ,

2023);

• OpenCV: Biblioteca para processamento de vídeo e manipulação de imagens em

tempo real (OPENCV, 2025);

• Google Colab Research: Ferramenta fornecida pela Google Cloud para pesquisas

baseadas em treinamento de modelos (GOOGLE, 2025);

• AES: Algoritmo Advanced Encryption Standard (AES) em modo EAX. Nesse processo,

os embeddings de referência são convertidos em bytes e criptografados com uma

chave definida em configuração. O uso do modo EAX assegura tanto a confidenci-

alidade quanto a integridade dos dados, permitindo posteriormente a descriptografia

segura dos embeddings originais quando necessário.

31

3.2 Métodos

O desenvolvimento da solução foi dividido em etapas técnicas bem definidas, contem-

plando desde o treinamento e configuração dos modelos de Inteligência Artificial até a imple-

mentação da API, interface web e medidas de segurança de dados.

3.2.1 Detecção de Bounding Boxes

Na primeira etapa, chamada de detecção, foi usado o modelo YOLOv11, que analisa

cada quadro de um vídeo e localiza objetos de interesse, como pessoas, retornando bounding

boxes com suas respectivas classificações.

Figura 6 – Exemplo de detecção de objetos com YOLO

Fonte: You Only Look Once: Unified, Real-Time Object Detection (REDMON et al., 2016).

O modelo é treinado para localizar e gerar bounding boxes ao redor das pessoas em

cada frame do vídeo. Esses recortes são posteriormente processados para extração de caracte-

rísticas, constituindo o ponto de partida do pipeline de reidentificação. A base para o treinamento

foi a COCO, já descrita na Seção 3.1.2.

• Parâmetros de Treinamento do YOLOv11:

1. Taxa de aprendizado: Definida inicialmente como 0,001. Este valor foi es-

colhido para permitir atualizações graduais dos pesos, evitando oscilações

durante o treinamento;

2. Batch Size: Um lote de 64 amostras foi utilizado, equilibrando entre veloci-

dade de processamento e estabilidade da atualização dos gradientes;

3. Número de épocas: Fora um ciclo de 100 a 150 épocas com um modelo

parcialmente treinado, com monitoramento da perda de validação, evitando

sobreajuste;

4. Função de perda: Foram utilizadas as funções padrão da arquitetura YO-

LOv11: bounding box regression loss, objectness loss e classification loss;

5. Data Augmentation: Técnicas como random horizontal flip, scale jittering, co-

lor jitter e random crop foram aplicadas para aumentar a acurácia do modelo

32

diante de variações de iluminação, ângulo e posição (GONZALEZ; WOODS,

2008);

6. Dropout: Embora a arquitetura YOLOv11 minimize o uso de dropout, técnicas

de regularização como early stopping foram empregadas.

Durante o processo de treinamento do YOLOv11, observou-se que a configuração ini-

cial resultava em flutuações no gradiente e consumo excessivo de memória. Foram, portanto,

realizados ajustes progressivos com base nas métricas de validação e nos limites do ambiente

de execução (GPU Tesla T4, 16 Gigabyte (GB) (GB)s de VMemória de Acesso Aleatório (RAM,

do inglês Random Access Memory) (RAM)).

Os valores foram definidos a partir das recomendações da documentação oficial do YO-

LOv11 e de experimentos reportados na literatura recente (ULTRALYTICS, 2024), buscando

replicar práticas consolidadas de ajuste fino em modelos de detecção em tempo real.

Além disso, empregou-se o método nativo de afinação de hiperparâmetros disponibili-

zado pelo framework Ultralytics, que integra o Ray Tune, uma ferramenta de otimização distri-

buída voltada ao ajuste automático de hiperparâmetros em modelos de aprendizado profundo

(LIANG et al., 2018). Essa abordagem permitiu explorar de forma sistemática diferentes combi-

nações de parâmetros, favorecendo a convergência estável do modelo e a obtenção de métricas

de desempenho mais consistentes.

3.2.2 Extração de Embeddings

Na segunda etapa, chamada de extração de embeddings, o modelo de reidentificação

aplica uma RNC sobre as imagens recortadas das pessoas detectadas. O resultado é um vetor

numérico que representa matematicamente as características visuais do indivíduo, como cor da

roupa, proporção corporal, padrões e texturas (GOODFELLOW; BENGIO; COURVILLE, 2016).

Figura 7 – Exemplo de mapeamento de embeddings.

Fonte: Omni-Scale Feature Learning for Person Re-Identification. (ZHOU et al., 2019)

Para cada pessoa detectada, foi aplicado um modelo leve de reidentificação (Re-ID), o

OSNet (ZHOU et al., 2019), que transforma a imagem recortada da pessoa em um embedding.

Como o sistema não parte de um banco de dados pré-existente, é possível fazer upload

de um embedding de referência previamente extraído a partir de uma imagem fornecida pelo

33

usuário final, por exemplo, uma captura de tela, ou uma foto da pessoa a ser rastreada, prefe-

rencialmente de corpo todo;

Para o treinamento e validação do OSNet, foi utilizada a base pública DukeMTMC-

VidReID, já descrita na Seção 3.1.2.

• Parâmetros de Treinamento da OSNet

1. Taxa de aprendizado: Inicialmente definida como 0,0003 com decaimento

progressivo, utilizando o scheduler StepLR para reduzir a taxa em um fator de

0,1 a cada 40 épocas. (ZHOU et al., 2019);

2. Otimizador: Função Adam com 𝛽1=0.9 de decaimento exponencial da media

dos gradientes e 𝛽2=0.999 de decaimento exponencial da média dos quadra-

dos dos gradientes, proporcionando melhor convergência em problemas de

classificação complexos;

3. Função de Perda: A função Triplet Loss foi utilizada por ser amplamente em-

pregada em tarefas de reidentificação de pessoas, nas quais o objetivo prin-

cipal é aprender um espaço de representação discriminativo.

4. Batch Size: Um lote de 64 amostras foi utilizado, para equilibrar velocidade

de processamento e estabilidade da atualização dos gradientes;

5. Número de épocas: Foram utilizado um ciclo de 250 épocas, com monitora-

mento da perda de validação para evitar sobreajuste;

6. Data Augmentation: Técnicas como random horizontal flip, random erasing

e random crop foram aplicadas para aumentar a acurácia do modelo diante

de variações de iluminação, ângulo e posição.

Estes foram computados em diferentes experimentos para delimitar os valores dos hi-

perparâmetros e posteriormente foram ajustados com base na análise dos resultados obtidos

durante o processo de treinamento.

A imagem de referência fornecida pelo usuário é processada pelo OSNet para gerar o

embedding, que é salvo como blob e depois utilizado para comparação na análise do vídeo.

Estes foram escolhidos com base em recomendações da documentação oficial do OSNet e em

experimentos descritos na literatura recente (ZHOU et al., 2019).

Comparação Vetorial

O usuário da aplicação (client) é responsável por fornecer a imagem de referência do

indivíduo que se deseja rastrear, como comentado anteriormente. A cada detecção de pessoa

no vídeo, o sistema calcula a distância entre o vetor de referência (utilizando a métrica de

distância euclidiana, mais recomendada para embeddings) e os vetores extraídos das pessoas

34

detectadas no vídeo. As menores distâncias indicam maior similaridade, permitindo identificar

recorrências do mesmo indivíduo ao longo do tempo e de diferentes cenas;

A etapa de correspondência (matching) entre a imagem de referência e as detecções

no vídeo é realizada utilizando métricas de distância vetorial. A principal métrica adotada é a

distância euclidiana, calculada conforme a Equação 2:

𝑑(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 (2)

Onde 𝑥 representa o vetor de embedding da imagem de referência e 𝑦 o vetor de uma

detecção no vídeo.

3.2.3 Avaliação do desempenho

A avaliação da acurácia da detecção de pessoas e da reidentificação foram realizada

com base nas seguintes métricas:

• Para Detecção (YOLO) (ULTRALYTICS, 2024):

1. mAP (mean Average Precision): Média das precisões em múltiplos níveis

de Intersection over Union (IoU). Mede a qualidade das caixas geradas;

AP =

∫︁ 1

0

𝑝(𝑟) 𝑑𝑟 (3)

mAP =
1

𝑁

𝑁∑︁
𝑖=1

AP𝑖 (4)

Onde:

– 𝑝(𝑟) é a precisão em função do recall ;

– 𝑁 é o número total de classes.

2. IoU (Intersection over Union): Métrica que avalia a sobreposição entre a

caixa prevista e a real;

IoU =
Área da Interseção

Área da União
(5)

3. Precision e Recall: Avaliação da taxa de verdadeiros positivos e cobertura

de detecção.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6)

35

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7)

Onde:

– 𝑇𝑃 são os verdadeiros Positivos;

– 𝑇𝑁 são os falsos positivos;

– 𝐹𝑃 são os falsos positivos;

– 𝐹𝑁 são os falsos negativos.

• Para Re-ID (OSNet) (ZHOU et al., 2019):

1. Rank-k Accuracy : Indica a frequência com que a pessoa correta aparece nas

𝑘 primeiras posições da lista de resultados;

Rank-k Accuracy =
Nº de consultas positivas nas k primeiras posições

Número total de consultas
(8)

2. mINP (mean Inverse Negative Penalty): Mede a robustez do modelo consi-

derando variações nos resultados negativos;

INP =
1

𝑃

𝑃∑︁
𝑖=1

1

𝑟𝑖
(9)

Onde:

– 𝑃 é o número total de consultas;

– 𝑟𝑖 é o Rank da primeira ocorrência correta para a consulta.

3. CMC (Cumulative Matching Characteristic): Avalia o desempenho cumula-

tivo da reidentificação por Rank (ZHOU et al., 2019).

As fórmulas dessas métricas estão descritas na literatura (ZHENG et al., 2015; ZHOU

et al., 2019) e foram implementadas como scripts de validação paralela ao sistema quando não

havia métodos pré-prontos provindos dos frameworks de treino.

3.2.4 Integração do modelo via API

A comunicação com o sistema foi viabilizada por meio de uma API desenvolvida com o

framework FastAPI. Foram implementados endpoints específicos para as seguintes funções:

• /upload-hash: Recebimento da imagem de referência, que será convertida em embed-

ding;

36

• /video-stream: Conexão com transmissões ao vivo, via protocolo websocket ;

• /find: Requisições de busca por aparições da pessoa de interesse no vídeo.

3.2.5 Desenvolvimento da Interface Web

Nesta etapa, foi desenvolvida uma interface gráfica minimalista, conectada a uma API

escalável, com o objetivo de viabilizar testes, demonstrações e a utilização prática do sistema

por usuários finais. A interface permite a visualização dos vídeos processados com marcações

visuais nas bounding boxes, indicação dos timestamps das ocorrências e identificação dos indi-

víduos reconhecidos no vídeo.

O desenvolvimento da API e da interface segue os princípios de Design Direcionado Do-

mínio (DDD do inglês Domain Driven Design) (DDD), uma abordagem arquitetural proposta por

Eric Evans (EVANS, 2003), cujo foco é alinhar a estrutura de software ao domínio de negócio,

promovendo um código mais organizado, desacoplado e de fácil manutenção. O DDD tem como

conceitos centrais os seguintes:

• Interface (Presentation Layer): Essa camada é responsável por receber as requi-

sições dos usuários (via interface web ou chamadas de API RESTful) e entregar as

respostas apropriadas. Inclui os controladores de rotas, validações iniciais de entrada

(em conjunto com o Zod) e os adaptadores que traduzem as requisições externas em

comandos compreendidos internamente pela aplicação;

• Camada de Aplicação (Application Layer): A camada de aplicação é responsável

por coordenar o fluxo de execução das operações de negócio, sem implementar regras

de negócio propriamente ditas. Ela orquestra os casos de uso, chamando os serviços

do domínio, gerenciando transações e controlando o fluxo de dados entre as outras

camadas;

• Camada de Domínio (Domain Layer): Esta camada contém o núcleo das regras de

negócio da aplicação. Aqui estarão definidas as entidades, value objects, serviços de

domínio, regras de validação específicas e as interfaces dos repositórios. No contexto

desta pesquisa, conceitos como Pessoa, Vídeo e Usuário serão modelados como en-

tidades ou objetos de valor;

• Camada de Infraestrutura (Infrastructure Layer): A camada de infraestrutura é res-

ponsável por implementar os detalhes técnicos da aplicação. Isso inclui o acesso ao

banco de dados (via Knex e Objection), serviços de armazenamento de arquivos (como

os vídeos e embeddings) e comunicação com a Inteligência Artificial (incluindo o dis-

paro das detecções via Python). Essa camada também é responsável pela integração

com bibliotecas externas, como o Sphinx para documentação.

37

Ao adotar o DDD, o sistema garante que suas regras de negócio sejam expressas de

forma clara e independente da camada de infraestrutura, facilitando futuras expansões, como a

adição de novas fontes de vídeo, suporte a múltiplos algoritmos de reidentificação ou a integra-

ção com sistemas externos.

3.2.6 Criação da documentação

A documentação técnica da API foi gerada utilizando o Sphinx, com formato de saída

em HTML estático, integrando exemplos de uso, explicações de cada endpoint e detalhes sobre

o funcionamento interno dos módulos de IA. Além disso, foi criado um OpenAPI Specification

para facilitar o consumo da API por desenvolvedores externos.

38

4 RESULTADOS FINAIS

Este capítulo apresenta os resultados obtidos no desenvolvimento da solução de ras-

treamento de pessoas em vídeo baseada em Inteligência Artificial. São descritas as etapas

concluídas, bem como uma breve análise dos dados coletados em conformidade com os ob-

jetivos estabelecidos nas Seções 1.1.1 e 1.1.2. Além disso, são apresentados os protótipos

desenvolvidos para o sistema, considerando que este Trabalho de Conclusão de Curso consiste

em uma proposta de caráter experimental, com foco na segurança de acesso e no uso ético de

técnicas de Inteligência Artificial aplicadas ao rastreamento de pessoas em vídeo.

4.1 Telas

Nesta seção, são apresentados as telas de interface elaboradas para a aplicação web e

o painel administrativo do sistema de rastreamento de pessoas. O foco principal foi criar um fluxo

de interação simples, seguro e com baixo nível de complexidade operacional, considerando

usuários com diferentes níveis de conhecimento técnico. As telas foram projetadas no Figma

e desenvolvidas por componentização em React Native e Expo, seguindo princípios de design

responsivo.

Autenticação e Controle de Acesso

Figura 8 – Telas de Registro e Autenticação.

Fonte: Autoria Própria

39

A primeira interação do usuário com o sistema é a tela de autenticação, conforme mostra

na Figura 8, na qual este deve inserir suas credenciais (email e senha) para obter acesso ao

sistema. O mecanismo de autenticação implementa tokens JWT (JSON Web Tokens) assinados

via algoritmo HS256, com payload contendo identificador único do usuário (sub), id do usuário

(userId) e timestamps de emissão (iat), armazenados de forma segura em http-only cookies,

visando mitigar riscos de ataques por Cross-site scripting) (XSS).

A expiração do token é de 15 minutos, necessitando de renovação periódica através de

um endpoint /auth/refresh que valida um refresh token com duração estendida de 1 hora.

Além disso, foi implementado um esquema de controle de acesso Controle de Acesso

Baseado em Papéis (RBAC do inglês Role-Based Access Control) (RBAC) com dois níveis de

permissão, conforme mostra na Figura 9:

Figura 9 – Acesso RBAC pós-autenticação.

Fonte: Autoria Própria

Administrador (admin): Acesso total ao sistema, incluindo gerenciamento de usuários

(criar, editar, excluir), visualização de todos os vídeos e embeddings e remoção de embeddings

associados a indivíduos específicos e gerais.

40

Usuário Padrão: Acesso restrito ao seu próprio contexto, permitindo gerenciamento de

perfil, criação e deleção de vídeos de referência, manipulação de embeddings próprios e busca

de indivíduos em vídeos já processados ou transmissões ao vivo, conforme na Figura 10.

Figura 10 – Telas acessíveis ao Usuário.

Fonte: Autoria Própria

O sistema garante que campos sensíveis, como o tipo de perfil (role), não sejam aces-

síveis para usuários comuns no frontend, evitando escalonamentos indevidos de privilégio.

Gerenciamento de Usuários

A tela de Gerenciamento de Usuários, com exemplo mostrado na Figura 11, é acessada

apenas pelo Administrador, e este pode:

• Criar um novo usuário. Por segurança, todos novos usuários iniciam suas roles como

’USER’;

• Visualizar os usuários cadastrados;

• Fazer update das informações dos usuários já existentes.

O usuário padrão também terá acesso ao update, porém a ele não é liberada a opção

de role.

41

Figura 11 – Gerenciamento de usuários.

Fonte: Autoria Própria

Gerenciamento de Vídeos

Após a autenticação, o usuário é redirecionado para a interface principal, onde poderá

realizar o upload de vídeos ou estabelecer uma conexão via websocket para processar trans-

missões em tempo real.

Usuários podem:

• Listar os vídeos já enviados;

• Selecionar um vídeo específico para análise de detecção/reidentificação.

A interface permite associar um vídeo a um processo de detecção ou reidentificação

com base nos embeddings previamente cadastrados.

Gerenciamento de Pessoas (embeddings)

Na tela de Gerenciamento de Pessoas, com exemplo mostrado na Figura 13, o usuário

pode:

• Realizar o upload de uma imagem de referência (que será convertida em embedding);

• Visualizar os embeddings cadastrados relacionadas ao usuário logado em questão;

42

Figura 12 – Gerenciamento de vídeos.

Fonte: Autoria Própria

Figura 13 – Gerenciamento de pessoas.

Fonte: Autoria Própria

• Excluir imagens de referência já existentes relacionadas ao usuário logado em questão.

A busca por indivíduos é feita selecionando o embedding de interesse de uma lista, que

é comparado com as detecções presentes nos vídeos selecionados ou na transmissão ao vivo.

Modelagem de banco

A partir dos requisitos funcionais levantados durante a fase de planejamento, foi elabo-

rada a modelagem lógica do banco de dados para suportar as operações essenciais da aplica-

ção de rastreamento de pessoas. O objetivo principal desta modelagem foi garantir uma estru-

tura que atendesse tanto às regras de negócio relacionadas ao gerenciamento de usuários e

43

Figura 14 – Modelagem do banco de dados.

Fonte: Autoria Própria

vídeos quanto às necessidades específicas da manipulação de embeddings para reidentificação

de pessoas.

A modelagem do banco de dados foi projetada de forma relacional, buscando garantir a

integridade referencial e a escalabilidade do sistema. A estrutura foi normalizada até a Terceira

Forma Normal (3NF), eliminando redundâncias e dependências transitivas, o que contribui para

maior consistência nas operações de consulta e atualização dos dados.

A Figura 14 apresenta o diagrama de entidade-relacionamento (DER) que representa

o modelo lógico do sistema. A modelagem reflete diretamente os agregados definidos na ca-

mada de domínio descrita na Seção 3.2.5, mantendo alinhamento conceitual com a arquitetura

orientada a domínio (Domain-Driven Design).

A tabela users constitui a entidade central do modelo, responsável por armazenar infor-

mações de autenticação e controle de acesso. Contém os atributos username, email, password,

active e role, este último implementado como um tipo enumerado (enum: admin|user) para dife-

renciação de permissões. O identificador primário (PK) é o campo id, do tipo UUID, garantindo

unicidade global e reduzindo riscos de colisão. Um índice foi criado sobre o campo email, a fim

de otimizar o processo de autenticação.

A entidade people armazena as informações referentes aos indivíduos rastreados nos

vídeos. Cada registro está vinculado a um usuário específico por meio do campo user_id, de-

finido como chave estrangeira (FK) com política de exclusão em cascata (ON DELETE CAS-

CADE), o que assegura isolamento e integridade dos dados entre diferentes contas. Além disso,

44

o campo embedding armazena o vetor criptografado gerado pelo modelo de reidentificação (OS-

Net), enquanto o campo name referencia o identificador nominal ou descritivo da pessoa.

A tabela profile_pictures representa uma relação um-para-um (one-to-one) com a en-

tidade users, armazenando o caminho da imagem de perfil utilizada. Essa estrutura facilita a

associação de uma imagem base por usuário, sem redundância de dados.

Por fim, a entidade videos é responsável por registrar os metadados dos arquivos de

vídeo enviados à aplicação, incluindo o caminho de armazenamento (path), além dos campos de

controle temporal created_at e updated_at, permitindo rastreabilidade e versionamento. Cada

vídeo está associado a um único usuário por meio do campo user_id, também definido como

chave estrangeira.

Essa modelagem garante modularidade e consistência entre os módulos de autentica-

ção, rastreamento e armazenamento, além de refletir diretamente os princípios de encapsula-

mento e responsabilidade única adotados na arquitetura geral do sistema.

4.2 Desenvolvimento da API e Arquitetura do Sistema

O desenvolvimento da API foi implementado em TypeScript (v5.9.2), utilizando o fra-

mework Fastify (v5.4.0) para Node.js, reconhecido por sua alta performance e eficiência no tra-

tamento de requisições HTTP. A comunicação entre os módulos da aplicação segue o padrão

arquitetural RESTful, com a definição de endpoints específicos para as principais operações de

envio e recebimento de dados.

Foram integrados diversos middlewares para garantir segurança e consistência nas re-

quisições, incluindo autenticação via JSON Web Token (JWT), validação de esquemas de en-

trada com o Zod (v4.0.15) e documentação automatizada dos endpoints por meio do OpenA-

PI/Swagger (v9.5.2), que oferece uma interface visual interativa para desenvolvedores e usuá-

rios técnicos.

Figura 15 – Fluxo de desenvolvimento por Notion, estilo Kanban.

Fonte: Autoria própria.

A organização do fluxo de desenvolvimento seguiu o modelo ágil de sprints, registradas

e acompanhadas por meio de quadros Kanban na ferramenta Notion, segundo a Figura 15. Essa

45

metodologia possibilitou a distribuição estruturada das tarefas, o acompanhamento contínuo do

progresso e a adaptação iterativa das entregas.

A API responsável pela comunicação entre os modelos de inteligência artificial e a in-

terface foi projetada de acordo com os princípios do DDD, conforme proposto na Seção 3.2.5,

garantindo que as entidades e regras de negócio estejam consistentes e mantenham coerência

em toda a aplicação. O resultado foi uma base de código mais desacoplada, além de facilitar

a evolução futura do sistema e a incorporação de novos módulos. Os principais agregados do

domínio (User, Person e Video) encapsulam as regras de negócio fundamentais do sistema.

A persistência de dados foi abstraída por meio da aplicação do Repository Pattern, o

que permite que a lógica de acesso ao banco de dados seja isolada das regras de domínio,

promovendo baixo acoplamento e alta coesão entre os componentes da arquitetura.

Figura 16 – Visual da arquitetura Domain Drive Design.

Fonte: Autoria própria.

Durante a fase inicial desse desenvolvimento, foi feita a configuração do ambiente do

sistema, com as dependências e configurações necessárias, e então foi realizada a modelagem

do domínio dos agregados principais, estabelecendo suas relações e comportamentos espe-

rados. Uma vez definidas essas entidades, iniciou-se a implementação camada por camada,

46

respeitando a arquitetura DDD, como visto na Figura 16 e conforme o exemplo de trecho de

código no apêndice A.

Então, finalizada a API, avançou-se para a próxima etapa do protótipo, descrita abaixo.

4.3 Desenvolvimento e Treinamento das IAs

O treinamento dos modelos de inteligência artificial teve início com a implementação do

framework Ultralytics YOLOv11. O processo foi conduzido com o objetivo de otimizar o equilí-

brio entre acurácia e desempenho computacional, ajustando os principais hiperparâmetros do

modelo — como taxa de aprendizado, batch size e número de épocas, conforme descrito na

Seção 3.2.1.

Os ajustes realizados demonstram que pequenas variações nos hiperparâmetros — es-

pecialmente na taxa de aprendizado e na ponderação das funções de perda — exercem impacto

direto na estabilidade do treinamento e na qualidade das detecções.

Esses ajustes também refletiram diretamente na melhoria das métricas de desempenho,

especialmente na precisão média (mAP50 e mAP50-95), que apresentaram crescimento cons-

tante até a estabilização por volta da 50ª época, conforme evidenciado na Figura 17. Esta ilustra

a evolução das métricas ao longo das épocas.

Figura 17 – Métricas mAP50 e mAP50-90 no treinamento do modelo YOLO.

Fonte: Autoria própria.

Observa-se que o modelo atingiu um mAP50 de aproximadamente 0,75 e mAP50–95 de

0,52, valores compatíveis com os obtidos em benchmarks de detecção em cenários de vigilância

(REDMON et al., 2016). Quando comparado ao YOLOv8n — que apresenta mAP50–95 em

torno de 0,37 — o modelo proposto obteve um ganho de aproximadamente 40%, indicando

melhoria significativa na detecção de pessoas, mesmo em condições de iluminação e oclusão

parciais

47

Figura 18 – Métricas Precision e Recall no treinamento do modelo YOLO.

Fonte: Autoria própria.

A métrica mAP50–95, mais rigorosa por avaliar múltiplos limiares de IoU, apresentou

crescimento estável até cerca de 0,52, demonstrando maior robustez do modelo diante de vari-

ações nas bounding boxes.

Já na Figura 18, pôde-se avaliar que a métrica Precision alcançou 0,82, refletindo uma

baixa taxa de falsos positivos. O Recall, por sua vez, estabilizou-se em torno de 0,66, valor

considerado adequado para detecção de pessoas em ambientes dinâmicos, embora ainda haja

espaço para otimização.

Segundo Redmon et al. (2016), a arquitetura YOLO tende a priorizar a precisão das

detecções em detrimento da cobertura, uma vez que o modelo é projetado para minimizar pre-

dições incorretas — o que explica o leve desbalanceamento entre Precision e Recall. Além

disso, conforme observado nas análises de erro, cerca de 68% dos falsos negativos ocorreram

em instâncias com oclusão superior a 50%, o que sugere a necessidade de futuros refinamen-

tos estruturais, como o uso de camadas deconvolutional ou mecanismos de atenção espacial

para melhorar a sensibilidade a regiões parcialmente visíveis.

A Figura 19 apresenta as curvas de perda correspondentes às fases de treinamento e

validação. Observa-se declínio contínuo nas perdas de classificação (cls_loss), regressão de

caixas (box_loss) e função de distribuição (dfl_loss), evidenciando a efetividade do processo

de aprendizado. As perdas de validação apresentaram redução mais acentuada nas primeiras

10 épocas, com tendência à estabilização após a 25ª, indicando o início da convergência do

modelo.

O valor final de val/box_loss abaixo de 0,01 indica que as caixas delimitadoras foram

bem ajustadas às regiões de interesse, com erro residual mínimo. Esse comportamento é con-

sistente com os resultados apresentados em trabalhos correlatos sobre variações recentes do

YOLO (ULTRALYTICS, 2025), reforçando a adequação do modelo à tarefa proposta.

48

Figura 19 – Acompanhamento da convergência da Função de Perda no treinamento do modelo
YOLO.

Fonte: Autoria própria.

Esses resultados demonstram que o modelo alcançou desempenho competitivo e con-

sistente, apresentando potencial para aplicação prática em sistemas de rastreamento de pes-

soas. Futuras otimizações podem incluir o ajuste fino de hiperparâmetros, uso de técnicas de

data augmentation mais específicas e reamostragem de casos de oclusão para aprimorar o

Recall sem comprometer a precisão.

Em relação ao modelo OSNet, as métricas se apresentam da seguinte forma:

Figura 20 – Métricas Mean Inverse Negative Penalty e Cumulative Matching Characteristic no trei-
namento do modelo OSNet.

Fonte: Autoria própria.

As Figuras 21 e 20 apresentam os resultados obtidos pelo modelo OSNet durante o

processo de reidentificação de pessoas na base Duke MTMC-VidReID. Observa-se que o mo-

delo alcançou o valor de 81,9% em 𝑘-1, enquanto os valores de Rank-5, Rank-10 e Rank-20

alcançaram 95%, 96,2% e 97,3%, respectivamente.

49

Figura 21 – Métricas Rank-k no treinamento do modelo OSNet.

Fonte: Autoria própria.

A Curva CMC obtida evidencia esse comportamento cumulativo: à medida que o valor

de 𝑘 aumenta, a taxa de reconhecimento cresce de forma estável, aproximando-se de 100% em

𝑘 = 20. Esse resultado demonstra que o modelo apresenta alta capacidade de generalização,

reconhecendo corretamente a maioria dos indivíduos com poucas tentativas de correspondên-

cia.

Além disso, o modelo obteve um valor de mINP = 1,31, o que indica boa estabilidade

na penalização de resultados negativos — ou seja, o modelo mantém desempenho consistente

mesmo em casos de oclusão ou variações de iluminação, reduzindo a probabilidade de falhas

severas de correspondência. Essa métrica complementa a interpretação do Rank-k, fornecendo

uma medida mais robusta da consistência global da reidentificação (CHEN et al., 2018).

Esses resultados demonstram que o modelo foi capaz de reconhecer corretamente a

maioria dos indivíduos nas primeiras posições do ranqueamento, evidenciando alta discrimi-

natividade dos embeddings gerados. A diferença entre Rank-1 e Rank-5 mostra que, mesmo

quando a primeira predição não é correta, o indivíduo correto aparece entre as cinco primeiras

posições em mais de 90% dos casos — um desempenho considerado competitivo para tarefas

de reidentificação de pessoas em cenários com múltiplas câmeras.

Em adição à análise da acurácia, foi avaliado o desempenho computacional do modelo

YOLOv11 em uma configuração de hardware modesta (GPU NVIDIA GTX 1060), simulando

50

um cenário de aplicação em tempo real. No teste, o modelo processou 180 frames extraídos

de um vídeo de 60 segundos (com taxa de amostragem de 1 em 10 frames), completando a

tarefa em aproximadamente 7 segundos. Esse tempo de execução resulta em uma taxa de

processamento média de ≈ 25,7 Frames por Segundo (FPS). Este desempenho demonstra um

equilíbrio notável entre acurácia e velocidade, uma vez que o modelo manteve um mAP50-95

de ≈ 0,50 ao mesmo tempo que atingiu uma taxa de processamento próxima ao tempo real

(30 FPS), adequando-se a cenários de vigilância que exigem baixa latência. Futuros trabalhos

e otimizações podem se concentrar em aumentar o número de frames analisados e replicar

esses testes em hardware mais robusto, como GPUs RTX, para avaliar o desempenho em taxa

de frames ainda maior e verificar se o patamar de mAP se mantém estável, consolidando a

robustez da solução.

Os valores estão alinhados com o desempenho relatado na literatura original do OSNet

(ZHOU et al., 2019), confirmando que o modelo desenvolvido neste trabalho apresenta boa

capacidade de generalização, mantendo-se dentro da faixa esperada para arquiteturas leves

aplicadas à reidentificação de pessoas.

Implementação dos modelos treinados para inferência em Python

Após a conclusão do treinamento dos modelos de detecção (YOLOv11) e reidentificação

(OSNet), foi desenvolvida uma API em Python dedicada exclusivamente à etapa de inferência,

responsável por integrar ambos os modelos dentro de um ambiente de execução contínuo. Essa

API foi construída sobre um servidor com suporte a WebSocket, permitindo a análise de fluxos

de vídeo em tempo real.

No contexto desta API, o foco recaiu sobre o Domínio Person, que foi isolado como a

principal entidade do sistema de inferência. Essa modelagem garante consistência e rastreabi-

lidade das identidades detectadas, mesmo em sessões distintas de análise, e permite manter a

coerência sem exigir persistência de dados entre requisições, conforme o apêndice B.

Os modelos treinados foram carregados em tensores PyTorch, de forma que pudessem

ser executados diretamente no servidor sem necessidade de retreino. Essa abordagem, além

de reduzir a latência da inferência, permite a utilização de GPUs para acelerar as operações de

convolução e geração de embeddings. Todo o código de treino e scripts de análise estatística

permaneceram na camada de infraestrutura, segundo a Figura 22, assegurando modularidade

e separação entre ambientes de desenvolvimento e produção.

Na camada de aplicação, foi implementado o pipeline de inferência, responsável pela

orquestração das duas redes neurais — YOLOv11 para detecção e OSNet para reidentificação.

Esse fluxo realiza a detecção inicial de pessoas em cada frame, recorta as regiões delimita-

das (bounding boxes) e, em seguida, gera e compara os embeddings extraídos por OSNet com

aqueles previamente cadastrados pelo usuário. Essa comparação utiliza medidas de simila-

51

Figura 22 – Visualização da arquitetura Domain Drive Design.

Fonte: Autoria própria.

ridade vetorial (distância euclidiana) para determinar a identidade mais provável, conforme o

apêndice C.

Para garantir a segurança e privacidade dos dados, todos os embeddings gerados são

criptografados imediatamente após sua criação, utilizando o algoritmo AES-256-GCM. Na cria-

ção de Person, cada embedding recebe um nonce aleatório de 96 bits concatenado ao cipher-

text, e o processo de descriptografia ocorre apenas no momento da comparação, evitando a

persistência de dados sensíveis em memória não segura, como visto no apêndice D.

Por fim, a camada de interface foi implementada de forma a permitir tanto a comunicação

via HTTP, para requisições pontuais de inferência, quanto por WebSocket, para fluxos contínuos

de vídeo.

52

4.4 Documentação

A documentação técnica do sistema foi elaborada utilizando o framework Sphinx, que

permite a geração de páginas estáticas a partir de arquivos no formato reStructuredText. Essa

escolha foi motivada pela integração nativa com projetos em Python e pela capacidade de ex-

portar documentação navegável, com estrutura hierárquica de módulos e classes.

O conteúdo da documentação abrange as principais etapas de desenvolvimento do sis-

tema, incluindo:

• Estrutura e descrição dos endpoints da API, com exemplos de requisição e resposta;

• Instruções de execução e implantação do sistema em ambiente local ou containeri-

zado;

• Detalhes sobre os modelos de inteligência artificial utilizados, incluindo parâmetros de

inferência e formatos de entrada e saída.

A interface da documentação foi gerada com o tema sphinx_rtd_theme, compatível com

o padrão Read the Docs, resultando em uma página responsiva e de fácil navegação. Além

disso, foram integradas extensões para suporte a anotações de tipo do Python e blocos de

código interativos, facilitando a leitura e reprodução dos exemplos.

A versão mais recente da documentação está hospedada de forma pública no GitHub

Pages com GitHub Actions para rodar as atualizações futuras, e pode ser acessada em:

https://beatrizamante.github.io/watchme_ai

Essa estrutura visa não apenas descrever o funcionamento do sistema, mas também

garantir sua reprodutibilidade e servir de base para futuras pesquisas ou colaborações.

https://beatrizamante.github.io/watchme_ai

53

5 CONSIDERAÇÕES FINAIS

Conclui-se que este projeto busca entregar uma solução funcional, acessível e escalável

para o rastreamento de pessoas por vídeo com o uso de inteligência artificial, por meio do

desenvolvimento de uma API end-to-end. A proposta se fundamenta na construção de uma

ponte entre a complexidade técnica do reconhecimento visual baseado em redes neurais e a

necessidade de interfaces simplificadas que viabilizem o uso por profissionais não especialistas

em IA.

Especificamente, pretende-se disponibilizar uma API bem documentada, com endpoints

REST organizados, exemplos de requisição e retorno em JSON, além de uma interface visual

intuitiva, que permita o teste e a validação das funcionalidades sem exigir conhecimento avan-

çado em programação ou aprendizado de máquina.

O projeto procura superar dificuldades recorrentes na adoção de tecnologias de ras-

treamento automatizado, como a ausência de ferramentas acessíveis, a falta de documentação

clara em muitos frameworks existentes e a complexidade na integração entre modelos de detec-

ção, rastreamento e reidentificação. Ao focar em modularidade, privacidade e facilidade de uso,

o sistema proposto visa democratizar o acesso a essas tecnologias, viabilizando sua aplicação

em contextos diversos — da segurança pública ao uso doméstico.

Além disso, espera-se que o protótipo desenvolvido desperte o interesse da comunidade

acadêmica e técnica para novas aplicações e extensões do sistema, como a inclusão de múl-

tiplos alvos, alertas em tempo real, integração com câmeras IP e dashboards analíticos para

monitoramento contínuo. Em um cenário onde a privacidade dos dados é cada vez mais rele-

vante, a proposta também levanta discussões importantes sobre ética e segurança, reforçando

a necessidade de ferramentas tecnológicas aliadas a boas práticas de proteção da informação.

54

REFERÊNCIAS

AL-JABERY, K. K. et al. 3 - clustering algorithms. In: AL-JABERY, K. K. et al. (Ed.).
Computational Learning Approaches to Data Analytics in Biomedical Applications.
Academic Press, 2020. p. 29–100. ISBN 978-0-12-814482-4. Disponível em: https:
//www.sciencedirect.com/science/article/pii/B9780128144824000036.

ALMASAWA, M.; ELREFAEI, L.; MORIA, K. A survey on deep learning based person
re-identification systems. IEEE Access, PP, p. 1–1, 12 2019.

Amazon Web Services. O que é uma Rede Generativa Adversária (GAN)? 2023. Acesso em:
30 abr. 2025. Disponível em: https://aws.amazon.com/pt/what-is/gan/.

BERGMANN, P.; MEINHARDT, T.; LEAL-TAIXE, L. Tracking without bells and whistles. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. p. 941–951.
Disponível em: http://dx.doi.org/10.1109/ICCV.2019.00103.

BERLYAND, L.; JABIN, P. Mathematics of Deep Learning: An Introduction. Berlin; Boston:
De Gruyter, 2023. ISBN 9783111024318.

CHACON, S.; STRAUB, B. Pro Git. Apress, 2014. Disponível em: https://git-scm.com/book/en/
v2.

CHEN, M. et al. Person re-identification by pose invariant deep metric learning with improved
triplet loss. IEEE Access, PP, p. 1–1, 11 2018.

CORPORATION, N. CUDA Toolkit Documentation. 2025. Acesso em: 17 jun. 2025. Disponível
em: https://developer.nvidia.com/cuda-toolkit.

CORPORATION, N. NVIDIA cuDNN: GPU Accelerated Deep Learning. 2025. Acesso em: 17
jun. 2025. Disponível em: https://developer.nvidia.com/cudnn.

DBDIAGRAM. DBDiagram. 2025. Acesso em: 17 jun. 2025. Disponível em: https:
//dbdiagram.io/.

DOCKER. Docker. 2025. Acesso em: 17 jun. 2025. Disponível em: https://www.docker.com/.

EVANS, E. Domain-driven design: tackling complexity in the heart of software. [S.l.]:
Addison-Wesley Professional, 2003.

EXPO. Expo. 2025. Acesso em: 17 jun. 2025. Disponível em: https://expo.dev/.

FETTE, I.; MELNIKOV, A. The WebSocket Protocol. 2011. RFC 6455. Disponível em:
https://datatracker.ietf.org/doc/html/rfc6455.

FIELDING, R. T. Architectural styles and the design of network-based software
architectures. 2000. Tese (Doutorado) — University of California, Irvine, 2000.

FIGMA. Figma. 2025. Acesso em: 17 jun. 2025. Disponível em: https://www.figma.com/.

FRAMEWORK, F. W. Fastify Web Framework. 2025. Acesso em: 17 jun. 2025. Disponível em:
https://fastify.dev/.

GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing. Upper Saddle River, N.J.:
Prentice Hall, 2008. ISBN 9780131687288.

https://www.sciencedirect.com/science/article/pii/B9780128144824000036
https://www.sciencedirect.com/science/article/pii/B9780128144824000036
https://aws.amazon.com/pt/what-is/gan/
http://dx.doi.org/10.1109/ICCV.2019.00103
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://dbdiagram.io/
https://dbdiagram.io/
https://www.docker.com/
https://expo.dev/
https://datatracker.ietf.org/doc/html/rfc6455
https://www.figma.com/
https://fastify.dev/

55

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge, MA: MIT Press,
2016. ISBN 9780262035613. Disponível em: https://www.deeplearningbook.org.

GOOGLE. Google Colab Research. 2025. Acesso em: 19 out. 2025. Disponível em:
https://colab.google.

INFERENCE, Z. T. first schema validation with static type. Zod - TypeScript-first schema
validation with static type inference. 2025. Acesso em: 17 jun. 2025. Disponível em:
https://zod.dev/.

JUNIOR, M. A. d. S.; MARTINI, J. S. C. Utilização eficiente em larga escala de
reconhecimento facial para análise preditiva de segurança em cidades inteligentes. 2019.
Dissertação (Mestrado) — Universidade de São Paulo, 2019.

KARMAKAR, A.; MISHRA, D. Pose Invariant Person Re-Identification using Robust
Pose-transformation GAN. 2021. Disponível em: https://arxiv.org/abs/2105.00930.

KNEX.JS. Knex.js. 2025. Acesso em: 17 jun. 2025. Disponível em: https://knexjs.org/.

LI, X. et al. Deep metric learning for few-shot image classification: A review of recent
developments. Pattern Recognition, v. 138, p. 109381, 2023. ISSN 0031-3203. Disponível em:
https://www.sciencedirect.com/science/article/pii/S0031320323000821.

LIANG, E. et al. RLlib: Abstractions for distributed reinforcement learning. In: International
Conference on Machine Learning (ICML). [s.n.], 2018. Disponível em: https://arxiv.org/pdf/
1712.09381.

LIN, T.-Y. et al. Microsoft coco: Common objects in context. In: SPRINGER. European
conference on computer vision (ECCV). [S.l.], 2014. p. 740–755.

MCLAUGHLIN, N.; RINCON, J. Martinez del; MILLER, P. Recurrent convolutional network for
video-based person re-identification. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). [S.l.: s.n.], 2016. p. 1325–1334.

MELO, P. V.; SERRA, P. Tecnologia de reconhecimento facial e segurança pública nas
capitais brasileiras: Apontamentos e problematizações. Comunicação e Sociedade,
n. 42, 2022. Postado online em 16 dez. 2022. Acesso em: 30 abr. 2025. Disponível em:
http://journals.openedition.org/cs/8111.

NATIVE, R. React Native. 2025. Acesso em: 17 jun. 2025. Disponível em: https:
//reactnative.dev/.

NATIVEWIND. NativeWind. 2025. Acesso em: 17 jun. 2025. Disponível em: https:
//www.nativewind.dev/.

NOTION. Notion. 2025. Acesso em: 17 jun. 2025. Disponível em: https://www.notion.so/.

NUMPY. NumPy. 2025. Acesso em: 17 jun. 2025. Disponível em: https://numpy.org/.

OBJECTION.JS. Objection.js. 2025. Acesso em: 17 jun. 2025. Disponível em: https:
//vincit.github.io/objection.js/.

OPENAPI. OpenAPI Specification (Swagger). 2025. Acesso em: 17 jun. 2025. Disponível em:
https://swagger.io/specification/.

OPENCV. OpenCV. 2025. Acesso em: 17 jun. 2025. Disponível em: https://opencv.org/.

POSTGRESQL. PostgreSQL. 2025. Acesso em: 17 jun. 2025. Disponível em: https:
//www.postgresql.org/.

https://www.deeplearningbook.org
https://colab.google
https://zod.dev/
https://arxiv.org/abs/2105.00930
https://knexjs.org/
https://www.sciencedirect.com/science/article/pii/S0031320323000821
https://arxiv.org/pdf/1712.09381
https://arxiv.org/pdf/1712.09381
http://journals.openedition.org/cs/8111
https://reactnative.dev/
https://reactnative.dev/
https://www.nativewind.dev/
https://www.nativewind.dev/
https://www.notion.so/
https://numpy.org/
https://vincit.github.io/objection.js/
https://vincit.github.io/objection.js/
https://swagger.io/specification/
https://opencv.org/
https://www.postgresql.org/
https://www.postgresql.org/

56

Python Software Foundation. Python Programming Language. 2025. Acesso em: 17 jun.
2025. Disponível em: https://www.python.org/.

PYTORCH. PyTorch. 2025. Acesso em: 17 jun. 2025. Disponível em: https://pytorch.org/.

RAMACHANDRAN, G. R. Modern api design: Ai-first architecture, event-driven patterns, and
zero-trust security. International Journal of Computer Trends and Technology, v. 72, n. 11,
p. 220–227, 2024.

RAMíREZ, S. FastAPI: Modern, fast (high-performance), web framework for building APIs
with Python 3.7+. 2023. Acesso em: 30 abr. 2025. Disponível em: https://fastapi.tiangolo.com.

REDMON, J. et al. You only look once: Unified, real-time object detection. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.],
2016.

SCIPY. SciPy. 2025. Acesso em: 17 jun. 2025. Disponível em: https://scipy.org/.

SILVA, M. L. S. As tecnologias de reconhecimento facial para Segurança Pública no
Brasil: perspectivas regulatórias e a garantia de Direitos Fundamentais. 2022. Monografia
(Graduação em Direito) - Universidade Federal do Rio Grande do Norte, Natal, 87f.

SPHINX. Sphinx Documentation Generator. 2025. Acesso em: 17 jun. 2025. Disponível em:
https://www.sphinx-doc.org/.

SRIVASTAVA, N. et al. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, v. 15, n. 56, p. 1929–1958, 2014. Disponível em:
http://jmlr.org/papers/v15/srivastava14a.html.

SUN, Y. et al. Learning part-based convolutional features for person re-identification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. 43, n. 3, p. 902–917, 2021.

TORCHREID. Torchreid: Person Re-identification Framework. 2025. Acesso em: 17 jun.
2025. Disponível em: https://kaiyangzhou.github.io/deep-person-reid/.

TYPESCRIPT. TypeScript. 2025. Acesso em: 17 jun. 2025. Disponível em: https:
//www.typescriptlang.org/.

ULTRALYTICS. YOLOv11 Documentation. 2024. Acesso em: Junho de 2025. Disponível em:
https://docs.ultralytics.com/.

ULTRALYTICS. Ultralytics YOLO. 2025. Acesso em: 17 jun. 2025. Disponível em:
https://github.com/ultralytics/ultralytics.

WEI, Y. et al. Deep learning for retail product recognition: Challenges and techniques.
Computational Intelligence and Neuroscience, v. 2020, p. 8875910, 2020.

WOJKE, N.; BEWLEY, A.; PAULUS, D. Simple online and realtime tracking with a deep
association metric. In: 2017 IEEE International Conference on Image Processing (ICIP).
IEEE Press, 2017. p. 3645–3649. Disponível em: https://doi.org/10.1109/ICIP.2017.8296962.

WU, J. et al. Segment Anything Model is a Good Teacher for Local Feature Learning. 2024.
Disponível em: https://arxiv.org/abs/2309.16992.

YADAV, S. K. et al. Yognet: A two-stream network for realtime multiperson yoga action recognition
and posture correction. Knowledge-Based Systems, v. 250, p. 109097, 2022. ISSN 0950-7051.
Disponível em: https://www.sciencedirect.com/science/article/pii/S095070512200541X.

https://www.python.org/
https://pytorch.org/
https://fastapi.tiangolo.com
https://scipy.org/
https://www.sphinx-doc.org/
http://jmlr.org/papers/v15/srivastava14a.html
https://kaiyangzhou.github.io/deep-person-reid/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://docs.ultralytics.com/
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/ICIP.2017.8296962
https://arxiv.org/abs/2309.16992
https://www.sciencedirect.com/science/article/pii/S095070512200541X

57

ZHENG, L. et al. Scalable person re-identification: A benchmark. In: 2015 IEEE International
Conference on Computer Vision (ICCV). [S.l.: s.n.], 2015. p. 1116–1124.

ZHENG, Z.; ZHENG, L.; YANG, Y. Unlabeled samples generated by gan improve the person
re-identification baseline in vitro. arXiv preprint arXiv:1701.07717, 2017.

ZHOU, K. et al. Omni-scale feature learning for person re-identification. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). [s.n.], 2019. p. 3707–3716.
Disponível em: https://arxiv.org/abs/1905.00953.

https://arxiv.org/abs/1905.00953

58

GLOSSÁRIO

backend parte lógica e de processamento de uma aplicação, responsável por regras de negó-

cio, banco de dados e comunicação com o frontend. 58

benchmark referência usada para medir ou comparar o desempenho de um produto, processo

ou investimento. 29, 46

cookie pequeno arquivo armazenado no navegador que contém informações sobre o usuário

ou sessão de um site. 39, 58

dashboard painel visual que apresenta dados e métricas em tempo real de forma organizada e

interativa. 10, 25, 53

dataset coleção organizada de dados, geralmente apresentada em formato de tabela com li-

nhas e colunas, que serve para análise, pesquisa e treinamento de modelos de inteli-

gência artificial. 16, 28, 29

embedding representação numérica de dados complexos, como palavras ou imagens, em um

espaço vetorial que facilita o processamento por modelos de aprendizado de máquina.

9, 12, 20–23, 25, 27, 30, 32–36, 39–44, 49–51

end-to-end abordagem em que um sistema executa todo o processo de entrada até a saída

final de forma automatizada, sem necessidade de etapas manuais intermediárias. 25,

53

endpoint ponto de acesso em uma API que define uma rota específica para comunicação entre

cliente e servidor. 27, 28, 35, 37, 39, 44, 52, 53

feature característica ou atributo mensurável usado como entrada em modelos de aprendizado

de máquina. 5, 9, 14, 21

framework estrutura ou conjunto de ferramentas e bibliotecas que fornecem uma base reutili-

zável para o desenvolvimento de aplicações de software. 9, 10, 12, 25, 28–30, 32, 35,

44, 46, 52, 53

frontend parte visual e interativa de uma aplicação, com a qual o usuário final interage direta-

mente. 27, 40, 58

http-only atributo de segurança de cookie que impede o acesso ao seu conteúdo via JavaScript,

reduzindo o risco de ataques de script. 39

middleware camada intermediária entre o frontend e o backend, usada para processar requisi-

ções, autenticação ou integração de serviços. 44

pipeline sequência de etapas que um processo deve seguir para atingir um objetivo, seja em

vendas, dados, programação ou hardware. 19, 31, 50

59

role função ou conjunto de permissões atribuídas a um usuário em um sistema de controle de

acesso. 40, 43

script conjunto de instruções executadas por um interpretador para automatizar tarefas em um

sistema ou aplicação. 35, 50, 58

software conjunto de programas e instruções que controlam o funcionamento de um computa-

dor ou realizam tarefas específicas. 24, 36, 58

streaming transmissão contínua de dados, como áudio ou vídeo, permitindo a reprodução ime-

diata sem necessidade de download completo. 25

timestamp registro temporal que indica o momento exato em que um evento ocorreu, geral-

mente em segundos desde uma data de referência. 36, 39

token sequência de caracteres usada para autenticação, autorização ou representação de da-

dos em sistemas computacionais. 28, 39

upload processo de enviar arquivos ou dados de um dispositivo local para um servidor remoto

ou serviço online. 25, 32, 41

APÊNDICES

61

APÊNDICE A – Trechos de Códigos para arquitetura Domain Driven

Design em TypeScript

62

Entidade de Domínio Person

1

2 expor t class Person {

3 p u b l i c readonly id ?: number ;

4 p u b l i c readonly user_ id : number ;

5 p u b l i c readonly name : s t r i n g ;

6 p u b l i c readonly embedding : Bu f fe r ;

7 / / code con t i nua t i on . . .

8 }

Exemplo da Camada de Aplicação para o caso de uso de Person

1 expor t const makeCreatePerson =

2 ({ personReposi tory } : Dependencies) =>

3 async ({ person } : CreatePersonParams) => {

4 const va l idPerson = new Person (person) ;

5

6 const newPerson = awai t personReposi tory . c reate (va l idPerson) ;

7 return PersonSer ia l i ze r . s e r i a l i z e (newPerson) ;

8 } ;

Exemplo da Camada de Interface para manejo de respostas e requisições de Per-

son

1 expor t const pe rsonCon t ro l l e r = {

2 create : async (request : Fast i fyRequest , r ep l y : Fas t i f yRep ly) => {

3 const { bodyData , f i l e } = awai t m u l t i f o r m F i l t e r (pa r t s) ;

4 const parseResul t = CreatePersonInput . safeParse (bodyData) ;

5 const { createPerson } = createRequestScopedContainer () ;

6

7 i f (! parseResul t . success) {

8 return r ep l y . s ta tus (4 0 0) . send ({

9 e r r o r : " I n v a l i d i npu t " ,

10 d e t a i l s : parseResul t . e r r o r . issues ,

11 }) ;

12 }

13

14 i f (! f i l e) {

15 throw new Inva l i dPersonEr ro r ({

16 message : "To f i n d a person , you need to add a p i c t u r e " ,

17 }) ;

18 }

63

19

20 f i l e S i z e P o l i c y ({ f i l e }) ;

21

22 / / . . . c a l l AI ap i . . .

23

24 const r e s u l t = awai t createPerson ({

25 person : {

26 name : parseResul t . data . name,

27 user_ id : userId ,

28 embedding ,

29 } ,

30 }) ;

31

32 return r ep l y . s ta tus (2 0 1) . send (r e s u l t) ;

33 }

34 }

64

APÊNDICE B – Trecho de código em Python para Predição de Person por

Embedding

65

Exemplo do handle do domínio Person em Python, sem persistência de dados

1 @router . post (" / upload −embedding ")

2 async def upload_person_image (request : ImageModel) :

3 " " "

4 Upload an image and get the person embedding .

5 " " "

6 pr in t (f " Received base64 image ")

7

8 t ry :

9 image_bytes = base64 . b64decode (request . image)

10

11 nparr = np . f rombu f fe r (image_bytes , np . u i n t8)

12 image = cv2 . imdecode (nparr , cv2 .IMREAD_COLOR)

13

14 i f image is None :

15 raise ValueError (" Could not decode image f i l e ")

16

17 embedding = create_person_embedding (image)

18

19 embedding_b64 = base64 . b64encode (embedding . toby tes ()) . decode (’ u t f −8 ’)

20

21 return {

22 " embedding " : embedding_b64 ,

23 " shape " : l i s t (embedding . shape) ,

24 " dtype " : st r (embedding . dtype) ,

25 " s ta tus " : " success "

26 }

27

28 def create_person_embedding (f i l e) :

29 encode = OSNetEncoder ()

30 person_bbox_ l is t = p r e d i c t (f i l e)

31

32 i f not person_bbox_ l is t or not person_bbox_ l is t [0] [’ de tec t i ons ’] :

33 raise ValueError ("No person detected , please t r y w i th another image ")

34

35 f i r s t _ d e t e c t i o n = person_bbox_ l is t [0] [’ de tec t i ons ’] [0]

36 cropped_image = f i r s t _ d e t e c t i o n [’ cropped_image ’]

37 t ry :

38 encoding = encode . encode_single_image (cropped_image)

39

40 i f encoding is None or encoding . s ize == 0:

66

41 raise ValueError (" Fa i led to generate person embedding ")

42

43 encrypted_embedding = encrypt_embedding (encoding)

44

45 return encrypted_embedding

67

APÊNDICE C – Trecho de Script para calculo de distância euclidiana

68

1 import numpy as np

2

3 def compute_eucl idean_distance (embedding1 , embedding2) :

4 return f l o a t (np . l i n a l g . norm (embedding1 − embedding2))

5

6 def compute_batch_distances (target_embedding , candidate_embeddings) :

7 i f target_embedding . ndim != 1 :

8 target_embedding = target_embedding . f l a t t e n ()

9

10 i f candidate_embeddings . ndim == 1:

11 candidate_embeddings = candidate_embeddings . reshape (1 , −1)

12

13 d is tances = np . l i n a l g . norm (candidate_embeddings − target_embedding , ax is =1)

14 return d is tances

69

APÊNDICE D – Trecho de código encriptação de dados

70

Encriptação

1 def encrypt_embedding (embedding : np . ndarray) −> bytes :

2 data = embedding . toby tes ()

3 c ipher = AES. new(key_se t t i ng . key_bytes , AES.MODE_EAX)

4 c i phe r t ex t , tag = c ipher . encrypt_and_digest (data)

5 return c ipher . nonce + tag + c i p h e r t e x t

Desencriptação

1 def decrypt_embedding (encrypted : bytes , shape , dtype) −> np . ndarray :

2 nonce = encrypted [: 1 6]

3 tag = encrypted [1 6 : 3 2]

4 c i p h e r t e x t = encrypted [3 2 :]

5 c ipher = AES. new(key_se t t i ng . key_bytes , AES.MODE_EAX, nonce=nonce)

6 data = c ipher . decryp t_and_ver i f y (c i phe r t ex t , tag)

7 return np . f rombu f fe r (data , dtype=dtype) . reshape (shape)

Uso em criação

1 # . . . begin . . .

2 encoding = encode . encode_single_image (cropped_image)

3

4 i f encoding is None or encoding . s ize == 0:

5 raise ValueError (" Fa i led to generate person embedding ")

6

7 encrypted_embedding = encrypt_embedding (encoding)

8

9 return encrypted_embedding

10 # . . . con t i nua t i on . . .

Desencriptado em predição

1 # . . . begin

2 for f rame_resu l t in peop le_resu l t s :

3 for de tec t i on in f rame_resu l t [’ de tec t i ons ’] :

4 al l_cropped_images . append (de tec t i on [’ cropped_image ’])

5 a l l_bboxes . append (de tec t i on [’ bbox ’])

71

6

7 i f not al l_cropped_images :

8 return []

9

10 decrypted_embedding = decrypt_embedding (chosen_person , shape =(512 ,) , dtype= ’ f l o a t 3 2 ’)

11

12 encoded_batch = encoder . encode_batch (al l_cropped_images)

13 matches = []

14 for i , encoded_person in enumerate (encoded_batch) :

15 d is tance = compute_eucl idean_distance (decrypted_embedding , encoded_person)

16 i f d is tance < 0 . 8 :

17 matches . append ({

18 " bbox " : a l l_bboxes [i] ,

19 " d is tance " : d is tance

20 })

21

22 return matches

23 #Never re tu rns the decrypted embedding , j u s t the coord ina tes and d is tance

72

ANEXO A – Checagem de Qualidade

73

Figura 23 – Imagem da bounding box desenhada na pessoa a ser checada.

Fonte: Autoria própria.

74

ANEXO B – Checagem de Qualidade

75

Figura 24 – Imagem da bounding box desenhada na pessoa a ser checada.

Fonte: Autoria própria.

	Agradecimentos
	Resumo
	Abstract
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	1.2 Justificativa

	2 Aprendizado de Máquina
	2.1 Aprendizado Profundo
	2.2 Detecção de pessoas via aprendizado profundo
	2.3 Reidentificação de Pessoas (Person Re-Identification)
	2.4 Estudos Relacionados

	3 Materiais e Métodos
	3.1 Materiais
	3.1.1 Desenvolvimento da api RESTful para regra de negócio
	3.1.2 Desenvolvimento das arquiteturas de aprendizado profundo

	3.2 Métodos
	3.2.1 Detecção de Bounding Boxes
	3.2.2 Extração de Embeddings
	3.2.3 Avaliação do desempenho
	3.2.4 Integração do modelo via api
	3.2.5 Desenvolvimento da Interface Web
	3.2.6 Criação da documentação

	4 Resultados Finais
	4.1 Telas
	4.2 Desenvolvimento da api e Arquitetura do Sistema
	4.3 Desenvolvimento e Treinamento das IAs
	4.4 Documentação

	5 Considerações Finais
	Referências
	Glossário
	Apêndices
	A Trechos de Códigos para arquitetura Domain Driven Design em TypeScript
	B Trecho de código em Python para Predição de Person por Embedding
	C Trecho de Script para calculo de distância euclidiana
	D Trecho de código encriptação de dados

	A Checagem de Qualidade
	B Checagem de Qualidade

