
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

RAFAEL SEDOR OLIVEIRA DEDA

UTFPETS: UMA APLICAÇÃO WEB PARA GERENCIAMENTO DE REFEIÇÕES
E CONTROLE NUTRICIONAL DE PETS

GUARAPUAVA

2025

RAFAEL SEDOR OLIVEIRA DEDA

UTFPETS: UMA APLICAÇÃO WEB PARA GERENCIAMENTO DE REFEIÇÕES

E CONTROLE NUTRICIONAL DE PETS

UTFPets: A Web Application for Meal Management and Nutritional Control of

Pets

Trabalho de Conclusão de Curso de Graduação
apresentado como requisito para obtenção do
título de Tecnólogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Roni Fabio Banaszewski

GUARAPUAVA

2025

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do traba-
lho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es).
Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são co-
bertos pela licença.4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

RAFAEL SEDOR OLIVEIRA DEDA

UTFPETS: UMA APLICAÇÃO WEB PARA GERENCIAMENTO DE REFEIÇÕES

E CONTROLE NUTRICIONAL DE PETS

Trabalho de Conclusão de Curso de Graduação
apresentado como requisito para obtenção do
título de Tecnólogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnológica Federal do Paraná.

Data de aprovação: 04/dezembro/2025

Prof. Roni Fabio Banaszewski
Doutorado

Universidade Tecnológica Federal do Paraná – UTFPR

Prof. Luciano Ogiboski
Doutorado

Universidade Tecnológica Federal do Paraná – UTFPR

Prof. William Alberto Cruz Castaneda
Doutorado

Universidade Tecnológica Federal do Paraná – UTFPR

GUARAPUAVA

2025

AGRADECIMENTOS

Agradeço à minha família pelo apoio incondicional, incentivo constante e compreensão

nos momentos de ausência, essenciais para a conclusão desta etapa acadêmica.

À minha noiva, Beatriz Farias Alvaides, pela colaboração técnica que ajudou a direci-

onar este projeto e pelo olhar profissional voltado à medicina veterinária, que contribuiu para

alinhar o desenvolvimento da solução às necessidades reais de tutores e animais.

Ao meu orientador, Prof. Dr. Roni Fabio Banaszewski, pela dedicação, confiança e pela

orientação fundamentada no rigor acadêmico e tecnológico, que incentivou o desenvolvimento

deste trabalho de forma crítica, autônoma e profissional.

Aos professores e servidores da Universidade Tecnológica Federal do Paraná

(UTFPR), pelos conhecimentos compartilhados, pela formação de qualidade e pela infraestru-

tura disponibilizada durante o curso.

Por fim, agradeço a todos que, direta ou indiretamente, contribuíram para este projeto,

seja pelo conhecimento compartilhado, pelas conversas produtivas ou pelo apoio moral, tor-

nando esta jornada mais leve e significativa.

Dedico este trabalho à minha noiva, Beatriz
Farias Alvaides, futura médica veterinária, que

acreditou nesta ideia antes mesmo de ela
existir por completo. Suas percepções, seu

cuidado com os animais e sua visão
profissional foram essenciais para transformar

um simples esboço em algo que pudesse gerar
impacto real.

“Escutar com atenção é como dar asas ao
pensamento de outra pessoa.”

C. S. Lewis

Que este projeto seja também parte do que
construímos juntos.

RESUMO

A alimentação adequada de animais de estimação é essencial para garantir saúde e bem-estar,

especialmente em um contexto de crescimento do número de animais domésticos. Entretanto,

diversos tutores enfrentam dificuldades ao gerenciar uma dieta equilibrada, em razão de rotinas

agitadas e de lacunas no conhecimento técnico, o que pode acarretar problemas de saúde

como obesidade e outras doenças crônicas. O presente trabalho descreve o desenvolvimento

de um aplicativo denominado UTFPets, que permite registrar dados sobre a saúde e alimen-

tação dos animais, receber lembretes de atividades e compartilhar informações com outros

cuidadores ou estabelecimentos especializados. Entre os principais recursos, destacam-se

o cadastro de usuário e do perfil do animal, lembretes para atividades essenciais, controle

alimentar e seções educativas sobre segurança alimentar e nutrição. Além disso, a aplicação

inclui o envio de notificações para garantir a entrega eficaz de lembretes e informações. Com

isso, há a intenção de que o UTFPets simplifique o controle nutricional e promova a saúde

dos animais, oferecendo aos tutores mais conscientização sobre os cuidados necessários e

melhorando a qualidade de vida dos pets e a rotina dos cuidadores.

Palavras-chave: gestão de pets; nutrição animal; controle alimentar; aplicativo para pets; tec-

nologia em saúde animal.

ABSTRACT

Proper nutrition for pets is essential to ensure their health and well-being, especially in the

context of an increasing number of domestic animals. However, many pet owners face chal-

lenges in managing a balanced diet due to busy routines and a lack of technical knowledge,

resulting in health issues such as obesity and other chronic diseases. This project aims to

develop an application called UTFPets. UTFPets will allow pet owners to record important

health and nutrition data about their pets, receive activity reminders, and share information with

other caregivers or establishments, such as pet hotels. Among its main features, the app will

include user registration, animal profiles, reminders for essential activities, dietary control, and

educational information about food safety and nutrition. The proposal also involves the use of

technologies like Firebase Cloud Messaging (FCM), enabling push notifications to ensure that

users receive relevant reminders and information conveniently. UTFPets is expected to simplify

nutritional management and promote pet health by providing users with greater control and

awareness of pet care, thereby improving the quality of life for pets and the daily routines of their

caregivers.

Keywords: pet management; animal nutrition; dietary control; pet app; health technology for

pets.

LISTA DE FIGURAS

Figura 1 – Página inicial do site do aplicativo Petzillas 18

Figura 2 – Página inicial do site do aplicativo FuncionalPet 19

Figura 3 – Página inicial do site do aplicativo PetDesk 19

Figura 4 – Página inicial do site do aplicativo Pet Diet Designer 19

Figura 5 – Diagrama entidade-relacionamento do banco de dados 37

Figura 6 – Telas de autenticação do UTFPets . 40

Figura 7 – Dashboard do UTFPets . 40

Figura 8 – Sistema de gerenciamento de pets . 41

Figura 9 – Sistema de gerenciamento de locations 41

Figura 10 – Página de gerenciamento de refeições 42

Figura 11 – Sistema de gerenciamento de lembretes 42

Figura 12 – Sistema de gerenciamento de compartilhamentos 42

Figura 13 – Página de convites pendentes . 43

Figura 14 – Sistema de notificações do UTFPets . 43

Figura 15 – Comparação entre perfis de usuário . 43

Figura 16 – Painel de gerenciamento de usuários (Admin) 44

Figura 17 – Visualização de todos os pets (Admin) 44

Figura 18 – Painel de auditoria e logs do sistema (Admin) 44

Figura 19 – Estrutura da tabela Users . 66

Figura 20 – Estrutura da tabela Locations . 68

Figura 21 – Estrutura da tabela Pets . 69

Figura 22 – Estrutura da tabela Meals . 71

Figura 23 – Estrutura da tabela Reminders . 72

Figura 24 – Estrutura da tabela SharedPets . 73

Figura 25 – Estrutura da tabela SharedLocations . 74

Figura 26 – Estrutura da tabela Notifications . 75

Figura 27 – Estrutura da tabela PushSubscriptions 76

Figura 28 – Estrutura da tabela AuditLogs . 77

LISTAGEM DE CÓDIGOS FONTE

Listagem 1 – Requisição HTTP para cadastro de pet 50

Listagem 2 – Resposta HTTP de sucesso ao cadastrar pet 50

Listagem 3 – Estrutura do repositório monorepo do UTFPets 55

LISTA DE ABREVIATURAS E SIGLAS

Siglas

API Application Programming Interface (Interface de Programação de Aplicações)

CDN Content Delivery Network (Rede de Distribuição de Conteúdo)

CI/CD Continuous Integration/Continuous Deployment (Integração Contínua/Implanta-

ção Contínua)

CRUD Create, Read, Update, Delete (Criar, Ler, Atualizar e Excluir)

CSS Cascading Style Sheets (Folhas de Estilo em Cascata)

E2E End-to-End (Extremo a Extremo)

FCM Firebase Cloud Messaging (Mensageria em Nuvem do Firebase)

GCP Google Cloud Platform (Plataforma de Nuvem do Google)

GDPR General Data Protection Regulation (Regulamento Geral de Proteção de Dados)

HTML HyperText Markup Language (Linguagem de Marcação de Hipertexto)

HTTP Hypertext Transfer Protocol (Protocolo de Transferência de Hipertexto)

HTTPS Hypertext Transfer Protocol Secure (Protocolo de Transferência de Hipertexto Se-

guro)

IAM Identity and Access Management (Gerenciamento de Identidade e Acesso)

JSON JavaScript Object Notation (Notação de Objetos JavaScript)

JWT JSON Web Token (Token Web JSON)

LGPD Lei Geral de Proteção de Dados

MVC Model-View-Controller (Modelo-Visão-Controlador)

MVP Minimum Viable Product (Produto Mínimo Viável)

ORM Object-Relational Mapping (Mapeamento Objeto-Relacional)

PHP PHP: Hypertext Preprocessor (Pré-processador de Hipertexto PHP)

PWA Progressive Web App (Aplicativo Web Progressivo)

RBAC Role-Based Access Control (Controle de Acesso Baseado em Funções)

REST Representational State Transfer (Transferência de Estado Representacional)

SPA Single Page Application (Aplicação de Página Única)

SQL Structured Query Language (Linguagem de Consulta Estruturada)

SSL Secure Sockets Layer (Camada de Soquetes Seguros)

UI User Interface (Interface do Usuário)

URL Uniform Resource Locator (Localizador Uniforme de Recursos)

UX User Experience (Experiência do Usuário)

VM Virtual Machine (Máquina Virtual)

WCAG Web Content Accessibility Guidelines (Diretrizes de Acessibilidade para Con-

teúdo Web)

SUMÁRIO

1 INTRODUÇÃO . 14

1.1 Objetivo geral . 14

1.2 Objetivos específicos . 15

1.3 Justificativa . 15

1.4 Estrutura do trabalho . 16

2 TRABALHOS RELACIONADOS . 18

2.1 Petzillas . 18

2.2 FuncionalPet . 18

2.3 PetDesk . 19

2.4 Pet Diet Designer . 19

2.5 Estudo comparativo . 20

3 REFERENCIAL TEÓRICO . 21

3.1 Processo de desenvolvimento . 21

3.1.1 Scrum . 21

3.1.2 Kanban . 21

3.1.3 Testes Automatizados . 22

3.2 Ferramentas de desenvolvimento . 22

3.2.1 Git, GitFlow e GitHub . 22

3.2.2 Google Cloud Platform (GCP) . 23

3.2.3 Monorepo . 23

3.3 Tecnologias do lado cliente . 24

3.3.1 Angular . 24

3.3.2 Progressive Web App (PWA) . 24

3.3.3 Bibliotecas e Ferramentas Complementares 25

3.4 Tecnologias do lado servidor . 25

3.4.1 Docker . 25

3.4.2 Laravel . 25

3.4.3 PostgreSQL . 26

3.4.4 Cloudinary . 26

3.4.5 JSON Web Token (JWT) . 26

3.4.6 Firebase Cloud Messaging (FCM) . 27

3.5 Considerações . 27

4 MATERIAIS E MÉTODOS . 28

4.1 Materiais . 28

4.2 Métodos . 29

4.2.1 Aplicação do Scrum e Kanban . 29

4.2.2 Planejamento e controle de tarefas . 29

4.2.3 Integração contínua e versionamento . 29

4.2.4 Ambientes e testes automatizados . 30

4.3 Considerações . 30

5 ANÁLISE E PROJETO DO SISTEMA . 31

5.1 Implementação do método MoSCoW . 31

5.2 Estrutura do aplicativo . 31

5.3 Papéis dos usuários e permissões . 32

5.3.1 Owner (Proprietário) . 32

5.3.2 Editor . 32

5.3.3 Viewer (Visualizador) . 33

5.3.4 Administrador do Sistema . 33

5.3.5 Matriz de permissões . 34

5.4 Histórias de Usuário prioritárias (Must Have) 34

5.4.1 Histórias de Usuário - Owner (Proprietário) 35

5.4.2 Histórias de Usuário - Editor (cuidador com edição) 35

5.4.3 Histórias de Usuário - Viewer (cuidador com visualização) 35

5.4.4 Histórias de Usuário - Administrador do Sistema 36

5.5 Modelagem do Banco de Dados . 36

5.5.1 Visão Geral do Modelo Relacional . 36

5.5.2 Evolução da modelagem durante o desenvolvimento 38

5.6 Protótipos das telas . 39

5.6.1 Telas de autenticação . 39

5.6.2 Dashboard (Página Inicial) . 40

5.6.3 Gerenciamento de pets . 41

5.6.4 Gerenciamento de locais . 41

5.6.5 Gerenciamento de refeições . 41

5.6.6 Sistema de lembretes . 42

5.6.7 Sistema de compartilhamento . 42

5.6.8 Sistema de notificações . 43

5.6.9 Painel administrativo . 43

5.6.10 Considerações sobre o design . 44

5.7 Considerações . 45

6 DESENVOLVIMENTO DO SISTEMA . 46

6.1 Arquitetura geral do sistema . 46

6.1.1 Camadas e organização do projeto . 46

6.1.2 Backend e persistência de dados . 46

6.1.3 Autenticação, notificações e mídia . 47

6.1.4 Infraestrutura e conteinerização . 47

6.1.5 Fluxo de requisições . 47

6.2 Fase inicial: estrutura base e prototipação 48

6.2.1 Contexto e planejamento . 48

6.2.2 Atividades realizadas . 48

6.2.3 Resultados da fase inicial . 48

6.3 Fase principal: implementação das funcionalidades essenciais 49

6.3.1 Contexto da retomada . 49

6.3.2 Narrativa do desenvolvimento . 49

6.3.3 Entregas e aprendizados . 51

6.4 Fase avançada: funcionalidades diferenciadas e PWA 52

6.4.1 Contexto e motivação . 52

6.4.2 Narrativa do desenvolvimento . 52

6.4.3 Entregas e reflexões . 53

6.5 Fase final: deploy, produção e refinamentos 53

6.5.1 Contexto da transição para produção . 53

6.5.2 Narrativa do desenvolvimento . 54

6.5.3 Entregas e lições do deploy . 56

6.6 Considerações Finais do Desenvolvimento 56

6.6.1 Estatísticas finais . 56

6.6.2 Métricas quantitativas do sistema . 56

6.6.3 Arquitetura e código . 58

6.6.4 Tecnologias utilizadas . 58

6.6.5 Funcionalidades implementadas . 58

6.6.6 Cobertura dos objetivos específicos . 59

6.6.7 Desafios superados . 59

6.6.8 Lições aprendidas . 60

7 CONCLUSÃO . 61

7.1 Trabalhos futuros . 62

REFERÊNCIAS . 64

APÊNDICE A ESTRUTURAS DAS TABELAS DO BANCO DE DADOS . 66

A.1 Tabela Users (Usuários) . 66

A.2 Tabela Locations (Locais) . 67

A.3 Tabela Pets . 69

A.4 Tabela Meals (Refeições) . 70

A.5 Tabela Reminders (Lembretes) . 72

A.6 Tabelas de Compartilhamento . 73

A.7 Tabela Notifications (Notificações) 74

A.8 Tabela PushSubscriptions (Assinaturas Push) 76

A.9 Tabela AuditLogs (Logs de Auditoria) 76

A.10Resumo dos Relacionamentos . 78

14

1 INTRODUÇÃO

A alimentação adequada é essencial para a saúde e o bem-estar de animais de estima-

ção, especialmente em um momento em que cada vez mais pessoas estão acolhendo pets em

suas casas e os tratando como parte da família. Uma nutrição balanceada não apenas previne

doenças crônicas, como obesidade e diabetes, mas também contribui para que os animais te-

nham uma vida mais longa e saudável (FASCETTI; DELANEY, 2012). Entretanto, a obesidade

é uma das condições nutricionais mais comuns entre cães e gatos, resultando em complicações

que podem incluir problemas metabólicos e aumento nos custos com cuidados veterinários (LA-

FLAMME; FLAMMER; HANSEN, 2008; GERMAN, 2022).

Estudos recentes reforçam a relevância do controle alimentar de animais de estimação.

A obesidade figura entre as principais doenças nutricionais em cães e gatos, frequentemente as-

sociada a dietas inadequadas e à falta de rotina nos cuidados diários (GERMAN, 2022; CHAN-

DLER, 2022). De acordo com a Association for Pet Obesity Prevention, aproximadamente 59%

dos cães e 61% dos gatos nos Estados Unidos e Europa apresentam excesso de peso, eviden-

ciando um problema de saúde recorrente (Association for Pet Obesity Prevention, 2024). Além

disso, a ausência de comunicação entre múltiplos cuidadores e o registro desorganizado de in-

formações podem agravar esses quadros, reduzindo a qualidade de vida dos animais (KOGAN;

HELLYER, 2023). Nesse contexto, soluções tecnológicas despontam como instrumentos valio-

sos para organizar e monitorar rotinas de alimentação e medicação, promovendo práticas mais

consistentes de cuidado e bem-estar animal.

Apesar da crescente conscientização sobre a importância da nutrição animal, muitos

tutores enfrentam dificuldades práticas no manejo diário. A rotina corrida, somada à falta de

comunicação entre múltiplos cuidadores em um mesmo lar, pode resultar em alimentação des-

controlada, duplicação de porções ou esquecimento de medicações (KOGAN; HELLYER, 2023).

Essas falhas comprometem a saúde dos pets e evidenciam a necessidade de ferramentas que

auxiliem na organização e coordenação dos cuidados.

Nesse contexto, a tecnologia apresenta-se como aliada para centralizar informações,

automatizar lembretes e facilitar o compartilhamento de responsabilidades. A proposta deste

trabalho é desenvolver uma aplicação web progressiva que permita registrar dados de saúde

dos animais, gerenciar rotinas alimentares, receber notificações automáticas e compartilhar in-

formações com cuidadores autorizados, contribuindo para uma gestão mais eficiente e colabo-

rativa dos cuidados com pets.

1.1 Objetivo geral

Desenvolver uma aplicação web e progressiva Progressive Web App (Aplicativo Web

Progressivo) (PWA) que centralize e facilite a gestão dos cuidados e informações de animais de

estimação.

15

1.2 Objetivos específicos

Para alcançar o objetivo geral, foram estabelecidos os seguintes objetivos específicos:

• Implementar um sistema de cadastro de usuário e perfil dos pets, permitindo o registro

de informações detalhadas de cada animal e a criação de uma base personalizada

para acompanhamento de saúde e bem-estar;

• Desenvolver funcionalidades de lembretes e notificações, de modo a auxiliar os tutores

na manutenção de um plano de cuidado consistente, incluindo horários de alimentação,

medicação e consultas;

• Criar um módulo de controle alimentar, no qual seja possível monitorar a dieta dos pets,

controlar porções e frequência de refeições, promovendo uma nutrição equilibrada e

individualizada;

• Implementar uma funcionalidade de compartilhamento de informações com controle

granular de permissões, viabilizando a colaboração entre diferentes cuidadores e ga-

rantindo que múltiplos responsáveis possam seguir a mesma rotina alimentar e de

cuidado;

• Desenvolver um painel administrativo para gestão do sistema, incluindo controle de

usuários, auditoria de ações e monitoramento de operações críticas.

1.3 Justificativa

O crescimento da população de animais de estimação no Brasil e no mundo tem sido

exponencial nas últimas décadas. Segundo o Instituto Pet Brasil (Instituto Pet Brasil, 2022), o

país possui cerca de 149,6 milhões de animais de estimação, sendo o terceiro maior mercado

pet do mundo.

Esse aumento reflete mudanças sociais importantes, nas quais os pets deixaram de ser

vistos apenas como animais de companhia para se tornarem membros efetivos das famílias.

Contudo, o crescimento na população de pets não foi acompanhado, na mesma propor-

ção, pelo conhecimento técnico necessário para oferecer cuidados adequados, especialmente

no que diz respeito à nutrição. Estudos como os de German (2022) e Laflamme, Flammer e Han-

sen (2008) demonstram que a obesidade é uma das condições nutricionais mais prevalentes em

cães e gatos, estando diretamente relacionada a problemas metabólicos, cardiovasculares e or-

topédicos.

A falta de controle sobre as porções, a frequência inadequada de alimentação e o des-

conhecimento sobre as necessidades nutricionais específicas de cada animal contribuem signi-

ficativamente para esse cenário.

16

A rotina cada vez mais agitada dos tutores dificulta o acompanhamento sistemático da

alimentação e medicação de seus pets. Muitas vezes, a ausência de um registro organizado

leva ao esquecimento de horários importantes e até mesmo à duplicação de refeições quando

mais de uma pessoa cuida do mesmo animal.

Essa falta de coordenação pode resultar em consequências graves para a saúde do pet,

comprometendo seu bem-estar e qualidade de vida.

Além disso, a colaboração entre múltiplos cuidadores representa um desafio adicional.

Em muitos lares, diferentes membros da família ou até mesmo profissionais, como dog wal-

kers e pet sitters, compartilham a responsabilidade pelos cuidados dos animais. A ausência

de uma plataforma centralizada para registro e compartilhamento de informações pode levar a

inconsistências na rotina do pet, comprometendo seu bem-estar.

Diante desse contexto, a tecnologia surge como uma aliada importante. Aplicativos mó-

veis e sistemas web têm se mostrado eficazes na organização de rotinas, no registro de informa-

ções e na promoção de boas práticas em diversas áreas da saúde (KOGAN; HELLYER, 2023).

No entanto, conforme evidenciado na revisão de trabalhos relacionados, as soluções existentes

no mercado geralmente focam em aspectos isolados do cuidado pet, como controle de vacinas

ou planejamento nutricional, sem oferecer uma abordagem integrada e colaborativa.

O UTFPets justifica-se, portanto, pela necessidade de preencher essa lacuna, ofere-

cendo uma plataforma que integre o gerenciamento alimentar, lembretes automatizados e a

possibilidade de compartilhamento de informações entre cuidadores com controle granular de

permissões. Ao centralizar essas funcionalidades em um único aplicativo, espera-se facilitar a

rotina dos tutores, reduzir erros no manejo dos pets e, consequentemente, promover uma ges-

tão mais eficiente dos cuidados diários.

Além dos benefícios diretos para os tutores e seus pets, o UTFPets também tem relevân-

cia acadêmica e profissional. O projeto aplica conceitos modernos de engenharia de software,

metodologias ágeis, arquitetura de sistemas web e boas práticas de desenvolvimento, contri-

buindo para a formação técnica do desenvolvedor e oferecendo um exemplo prático de como a

tecnologia pode resolver problemas reais e complexos da sociedade contemporânea.

Por fim, a justificativa do UTFPets reside na busca por promover o bem-estar animal

através da tecnologia, capacitando os tutores com ferramentas que facilitem a tomada de deci-

sões informadas sobre a saúde e nutrição de seus pets, e estabelecendo uma base sólida para

futuras expansões que possam incluir inteligência artificial, telemedicina veterinária e integração

com dispositivos inteligentes.

1.4 Estrutura do trabalho

Este trabalho está organizado em sete capítulos:

17

• No Capítulo 1, é apresentada a introdução do projeto, destacando a motivação, os

objetivos e a justificativa para o desenvolvimento do UTFPets, bem como a estrutura

deste trabalho.

• No Capítulo 2, são analisados sistemas similares existentes, realizando-se uma com-

paração entre as soluções disponíveis, suas funcionalidades, vantagens e limitações.

• No Capítulo 3, é apresentado o referencial teórico que sustenta o projeto, abordando

metodologias ágeis de desenvolvimento de software (Scrum, Kanban), testes automa-

tizados, ferramentas de controle de versão e as tecnologias utilizadas no desenvolvi-

mento de aplicações web modernas.

• No Capítulo 4, são descritos os materiais e métodos empregados, incluindo as ferra-

mentas, tecnologias e o processo metodológico utilizado no desenvolvimento do apli-

cativo.

• No Capítulo 5, são apresentados os artefatos de análise e projeto do sistema, tais como

funcionalidades prioritárias, prototipação de telas e modelagem do banco de dados.

• No Capítulo 6, são apresentados os resultados do desenvolvimento do sistema.

• Por fim, no Capítulo 7, apresenta-se a conclusão do trabalho, juntamente com suges-

tões para evoluções futuras.

18

2 TRABALHOS RELACIONADOS

Este capítulo apresenta alguns aplicativos existentes no mercado que oferecem funcio-

nalidades para o gerenciamento da saúde e da alimentação de animais de estimação. O objetivo

é avaliar em que medida tais soluções atendem às demandas de tutores e como o aplicativo

proposto (UTFPets) se diferencia em termos de recursos e abrangência.

Nos últimos anos, surgiram diversas soluções tecnológicas para auxiliar no controle de

vacinas, agendamento de consultas, planejamento nutricional e outras práticas relacionadas

ao bem-estar dos pets. Entre elas, destacam-se Petzillas, FuncionalPet, PetDesk e Pet Diet

Designer, descritos a seguir.

2.1 Petzillas

O Petzillas, ilustrado na Figura 1, é um aplicativo gratuito disponível para Android e iOS,

focado em fornecer aos tutores recursos para acompanhamento de vacinas, medicamentos,

vermífugos, antipulgas, consultas veterinárias, controle de peso e higiene. Um de seus pontos

fortes é a possibilidade de compartilhar dados com outros cuidadores, facilitando a colaboração

em lares com múltiplas pessoas responsáveis pelo mesmo animal.

Figura 1 – Página inicial do site do aplicativo Petzillas

2.2 FuncionalPet

O FuncionalPet, apresentado na Figura 2, é um software voltado principalmente para

clínicas veterinárias, com ênfase na elaboração de dietas personalizadas para cães e gatos.

Profissionais podem usar a ferramenta para gerar planos nutricionais e acompanhar a evolu-

ção do animal. Por outro lado, a versão atual não oferece recursos de lembretes diários ou de

compartilhamento de tarefas entre diversos cuidadores.

19

Figura 2 – Página inicial do site do aplicativo FuncionalPet

2.3 PetDesk

O PetDesk, ilustrado na Figura 3, destaca-se por auxiliar no gerenciamento de com-

promissos dos animais, como consultas veterinárias, lembretes de medicação e controle de

vacinas. É uma ferramenta útil para quem necessita de mais organização no acompanhamento

da saúde do pet. Entretanto, não contempla um módulo nutricional ou o controle de porções

diárias, limitando-se ao gerenciamento de eventos de saúde.

Figura 3 – Página inicial do site do aplicativo PetDesk

2.4 Pet Diet Designer

O Pet Diet Designer, ilustrado na Figura 4, é focado na alimentação de pets, com plane-

jamento de dietas, porções e monitoramento do consumo de água. Embora ofereça informações

nutricionais e dicas para manter a saúde dos animais, não prevê o registro de cuidados médicos

ou colaboração entre diferentes cuidadores.

Figura 4 – Página inicial do site do aplicativo Pet Diet Designer

20

2.5 Estudo comparativo

O Quadro 1 apresenta uma comparação entre os aplicativos analisados e o UTFPets.

Quadro 1 – Comparação de funcionalidades entre aplicativos de gerenciamento pet
Funcionalidade Petzillas FuncionalPet PetDesk Pet Diet Designer UTFPets
Gerenciamento de Perfil Sim Sim Sim Sim Sim
Controle Alimentar Parcial - - Sim Sim
Lembretes e Notificações Sim - Sim Parcial Sim
Planejamento Nutricional - Sim - Sim Parcial
Compartilhamento Cola-
borativo

Sim - - - Completo

Histórico de Saúde Sim Sim Sim - Sim
Conteúdo Educativo Parcial - Parcial Sim Parcial
Multiplataforma iOS/Android Web iOS/Android iOS/Android Web/PWA
Funcionalidade Offline - - - - Sim

Fonte: Autoria própria (2025).

Com base na análise comparativa, o UTFPets apresenta os seguintes diferenciais em

relação às soluções existentes:

1. Compartilhamento Colaborativo Avançado: Enquanto o Petzillas oferece comparti-

lhamento básico, o UTFPets implementa um sistema de compartilhamento com três

níveis de permissões (owner, editor, viewer), permitindo controle granular sobre quem

pode visualizar, editar ou gerenciar as informações dos pets. Além disso, suporta com-

partilhamento de locations inteiras, compartilhando automaticamente todos os pets vin-

culados.

2. Progressive Web App (PWA): O UTFPets é o único entre os analisados que funciona

como PWA, permitindo instalação em dispositivos sem necessidade de app stores,

funcionamento offline e notificações push mesmo com o aplicativo fechado.

3. Sistema de Lembretes Inteligentes: Lembretes com recorrência avançada, incluindo

dias da semana específicos, janelas de horário e suporte a múltiplos timezones.

4. Hierarquia Espacial: Organização de pets por locations (casas, apartamentos), com

suporte a timezone por local, facilitando o gerenciamento de pets em diferentes locali-

zações.

5. Notificações Multicanal: Sistema completo de notificações via banco de dados, e-mail

e push notifications, com histórico e controle de leitura.

6. Painel Administrativo: Sistema de auditoria e gerenciamento para administradores,

permitindo supervisão e controle do sistema.

7. Open Source e Extensível: Código aberto que permite futuras integrações e exten-

sões, incluindo potencial para inteligência artificial e telemedicina veterinária.

21

3 REFERENCIAL TEÓRICO

O presente capítulo apresenta os principais fundamentos e tecnologias que embasam o

desenvolvimento de aplicações web modernas, com foco em metodologias ágeis, arquitetura de

software, ferramentas de controle de versão e serviços em nuvem utilizados no desenvolvimento

do projeto.

3.1 Processo de desenvolvimento

O desenvolvimento de sistemas de software modernos demanda metodologias que per-

mitam flexibilidade, adaptação rápida a mudanças e entrega contínua de valor. Nesse contexto,

as metodologias ágeis têm se destacado como abordagens eficazes para conduzir projetos de

software de forma iterativa e incremental (SCHWABER; SUTHERLAND, 2017).

3.1.1 Scrum

O Scrum é um framework ágil amplamente utilizado para o gerenciamento de projetos

de desenvolvimento de software. Segundo Schwaber e Sutherland (2017), o Scrum organiza

o trabalho em ciclos curtos chamados sprints, que geralmente duram de uma a quatro sema-

nas. Cada sprint tem como objetivo entregar um incremento funcional do produto, permitindo

feedback rápido e ajustes contínuos.

O Scrum define três papéis principais: o Product Owner, responsável por priorizar o

backlog do produto e definir os requisitos; o Scrum Master, que facilita o processo e remove

impedimentos; e o Time de Desenvolvimento, que implementa as funcionalidades.

Entre os artefatos do Scrum, destacam-se o Product Backlog, que contém todas as fun-

cionalidades desejadas priorizadas; o Sprint Backlog, que lista as tarefas selecionadas para a

sprint atual; e o Incremento, que é a versão funcional do produto ao final de cada sprint. Além

disso, o Scrum prevê cerimônias como o planejamento da sprint, reuniões diárias (daily stan-

dups), revisão da sprint e retrospectiva, que promovem transparência, inspeção e adaptação

contínuas.

3.1.2 Kanban

O Kanban é outro método ágil que complementa o Scrum ao fornecer uma visualização

clara do fluxo de trabalho. Segundo Anderson (2010), o Kanban utiliza um quadro visual dividido

em colunas que representam os estágios do processo de desenvolvimento, como “A Fazer”, “Em

Progresso”, “Em Teste” e “Concluído”. Cada tarefa é representada por um cartão que se move

pelas colunas conforme avança no processo.

22

Uma das principais vantagens do Kanban é a identificação de gargalos no fluxo de tra-

balho. Ao limitar o número de tarefas em progresso simultaneamente (Work in Progress - WIP),

a equipe consegue focar em concluir tarefas antes de iniciar novas, aumentando a eficiência e

reduzindo o tempo de ciclo.

3.1.3 Testes Automatizados

Os testes automatizados consistem na utilização de ferramentas e frameworks que exe-

cutam automaticamente rotinas de verificação sobre o código-fonte, comparando o resultado

obtido com o resultado esperado (MESZAROS, 2007). Essa abordagem contribui para o princí-

pio de integração contínua, uma prática amplamente difundida em metodologias ágeis, na qual

o código é constantemente validado a cada atualização do repositório.

De acordo com Fewster e Graham (2012), os testes automatizados podem ser classifi-

cados em diferentes níveis de granularidade. Os testes unitários validam o comportamento de

funções, classes ou componentes isolados, garantindo que pequenas partes do sistema funcio-

nem corretamente. Já os testes de integração verificam a comunicação entre módulos distintos,

enquanto os testes de sistema analisam o comportamento do software como um todo. Em um

nível mais amplo, os testes de aceitação avaliam se o sistema atende aos requisitos definidos

pelo cliente ou usuário final.

Além disso, o uso de testes end-to-end (E2E) tem se tornado cada vez mais comum em

aplicações web modernas. Esses testes simulam o comportamento do usuário final, interagindo

com a interface gráfica e percorrendo fluxos reais do sistema, o que permite avaliar a experiência

de uso e identificar falhas que poderiam passar despercebidas em testes isolados (GAROUSI;

FELDERER; MäNTYLä, 2018).

3.2 Ferramentas de desenvolvimento

O desenvolvimento de aplicações web modernas demanda o uso de um conjunto inte-

grado de ferramentas que auxiliam na gestão do projeto, no controle de versão, na colaboração

entre desenvolvedores e na implantação contínua das soluções em ambiente de produção.

3.2.1 Git, GitFlow e GitHub

O Git é um sistema de controle de versão distribuído amplamente utilizado no desenvol-

vimento de software. Ele permite que desenvolvedores gerenciem mudanças no código-fonte de

forma eficiente, criando ramificações (branches) para desenvolver funcionalidades isoladamente

e mesclando (merge) essas mudanças de volta ao código principal quando estão prontas.

23

O GitFlow é uma estratégia de branching que define um fluxo de trabalho estruturado

para projetos Git. Segundo Driessen (2010), o GitFlow organiza o desenvolvimento em bran-

ches principais (main e develop) e branches auxiliares para funcionalidades (feature),

correções (hotfix) e releases.

O GitHub, por sua vez, é uma plataforma de hospedagem de repositórios Git que oferece

recursos adicionais como pull requests, issues, actions (CI/CD) e colaboração em equipe.

3.2.2 Google Cloud Platform (GCP)

A Google Cloud Platform é uma plataforma de computação em nuvem que oferece ser-

viços de infraestrutura, armazenamento e banco de dados com alta disponibilidade e escalabi-

lidade. A plataforma oferece monitoramento integrado, logs centralizados e escalabilidade sob

demanda, facilitando a manutenção e operação da aplicação em produção.

3.2.3 Monorepo

Monorepo é uma estratégia de organização de código onde múltiplos projetos relacio-

nados são mantidos em um único repositório de versionamento. Diferentemente da abordagem

tradicional de múltiplos repositórios (multirepo), onde cada componente ou serviço possui seu

próprio repositório, o Monorepo centraliza todo o código-fonte em uma estrutura unificada.

As principais vantagens do Monorepo incluem:

• Versionamento atômico: Mudanças que afetam múltiplos componentes podem ser

commitadas de forma atômica, garantindo consistência entre frontend, backend e ou-

tras partes do sistema;

• Refatoração simplificada: Alterações que afetam múltiplos projetos podem ser reali-

zadas em um único commit, facilitando a manutenção e evolução do código;

• Compartilhamento de código: Bibliotecas, tipos, interfaces e utilitários podem ser

facilmente compartilhados entre diferentes partes do projeto;

• Testes integrados: Facilita a execução de testes end-to-end e de integração que en-

volvem múltiplos componentes do sistema;

• Configuração centralizada: Scripts de build, deploy, Continuous Integration/Continu-

ous Deployment (Integração Contínua/Implantação Contínua) (CI/CD) e configurações

de ambiente podem ser mantidos em um único local.

No contexto do UTFPets, a arquitetura Monorepo consolidou o backend Laravel, frontend

Angular, testes E2E, configurações nginx e scripts de automação em uma estrutura organizada.

24

Essa decisão baseou-se na necessidade de manter consistência entre as interfaces e Applica-

tion Programming Interface (Interface de Programação de Aplicações) (API)s, além de simplificar

o processo de CI/CD e facilitar o desenvolvimento local através do Docker Compose.

3.3 Tecnologias do lado cliente

3.3.1 Angular

O Angular é um framework desenvolvido pelo Google para a construção de aplicações

web dinâmicas e Single Page Applications (Single Page Application (Aplicação de Página Única)

(SPA)s). Ele utiliza TypeScript, uma linguagem que adiciona tipagem estática ao JavaScript,

aumentando a segurança e facilitando a manutenção do código.

O Angular adota uma arquitetura baseada em componentes, onde cada componente

encapsula sua lógica, template HyperText Markup Language (Linguagem de Marcação de Hi-

pertexto) (HTML) e estilos Cascading Style Sheets (Folhas de Estilo em Cascata) (CSS). Essa

modularidade facilita a reutilização de código e a organização do projeto. Além disso, o Angular

oferece recursos poderosos como injeção de dependências, roteamento, formulários reativos,

gerenciamento de estado e comunicação com APIs através do módulo Hypertext Transfer Pro-

tocol (Protocolo de Transferência de Hipertexto) (HTTP) Client.

3.3.2 Progressive Web App (PWA)

Progressive Web App (PWA) é uma abordagem de desenvolvimento que combina o

melhor das aplicações web e nativas, oferecendo experiências de usuário ricas e confiáveis

mesmo em condições de conectividade limitada (RUSSELL; FIRTMAN, 2018). Os PWAs utili-

zam tecnologias como Service Workers, Web App Manifest e Hypertext Transfer Protocol Se-

cure (Protocolo de Transferência de Hipertexto Seguro) (HTTPS) para habilitar funcionalidades

como instalação na tela inicial, notificações push e funcionamento offline.

Os Service Workers são scripts que rodam em background, interceptando requisições

de rede e permitindo o cache de recursos. Isso possibilita que o aplicativo carregue rapida-

mente e funcione mesmo quando o dispositivo está offline. O Web App Manifest é um arquivo

JavaScript Object Notation (Notação de Objetos JavaScript) (JSON) que define metadados da

aplicação, como nome, ícones, cores e orientação, permitindo que o PWA seja instalado como

um aplicativo nativo.

25

3.3.3 Bibliotecas e Ferramentas Complementares

Além do Angular e PWA, o frontend do UTFPets utilizou diversas bibliotecas comple-

mentares:

• RxJS 7.8: Biblioteca para programação reativa, permitindo o gerenciamento eficiente

de eventos assíncronos e streams de dados através de Observables;

• TailwindCSS 3.4: Framework CSS utilitário que facilita a criação de interfaces res-

ponsivas e modernas através de classes utilitárias, reduzindo a necessidade de CSS

customizado;

• Angular Material 17: Biblioteca de componentes User Interface (Interface do Usuário)

(UI) baseada no Material Design, oferecendo elementos prontos como botões, formu-

lários, diálogos, tabelas e cards;

• Angular CDK (Component Dev Kit): Conjunto de ferramentas para criar componentes

customizados com funcionalidades avançadas como drag-and-drop, overlays e acessi-

bilidade.

3.4 Tecnologias do lado servidor

3.4.1 Docker

O Docker é uma plataforma de conteinerização que permite empacotar aplicações e

suas dependências em contêineres leves e portáteis (MERKEL, 2014). Um contêiner é uma

unidade de software que inclui tudo o que é necessário para executar a aplicação: código,

runtime, bibliotecas e configurações do sistema. A principal vantagem do Docker é garantir que

a aplicação funcione de forma consistente em qualquer ambiente, eliminando problemas do tipo

“funciona na minha máquina”.

O Docker Compose foi utilizado para orquestrar esses contêineres através

de arquivos distintos: docker-compose.local.yml para desenvolvimento e

docker-compose.yml para produção, definindo suas configurações, variáveis de ambi-

ente, volumes e redes. Isso simplificou o processo de desenvolvimento e deploy, garantindo

consistência entre ambientes.

3.4.2 Laravel

O Laravel é um framework PHP: Hypertext Preprocessor (Pré-processador de Hiper-

texto PHP) (PHP) moderno e elegante para o desenvolvimento de aplicações web, conhecido

26

por sua sintaxe expressiva e ferramentas poderosas. Ele segue o padrão arquitetural Model-

View-Controller (Modelo-Visão-Controlador) (MVC) (Model-View-Controller) e oferece funcio-

nalidades como roteamento, middlewares, Eloquent Object-Relational Mapping (Mapeamento

Objeto-Relacional) (ORM) para manipulação de banco de dados, sistema de autenticação, filas,

notificações e muito mais.

3.4.3 PostgreSQL

O PostgreSQL é um sistema gerenciador de banco de dados relacional open-source

conhecido por sua confiabilidade, robustez e conformidade com padrões Structured Query Lan-

guage (Linguagem de Consulta Estruturada) (SQL). Ele oferece suporte a transações ACID,

índices avançados, triggers, views, stored procedures e tipos de dados complexos, como JSON

e arrays.

No contexto do Laravel, o conceito de migrations é implementado através do sistema

nativo que permite criar, modificar e reverter estruturas de tabelas de forma controlada e versi-

onada.

Cada migration representa uma mudança específica no banco de dados, como a cria-

ção de uma tabela, adição de uma coluna ou criação de índices. As migrations são executadas

sequencialmente, garantindo que todos os ambientes (desenvolvimento, teste e produção) pos-

suam o mesmo esquema de banco de dados.

3.4.4 Cloudinary

O Cloudinary é um serviço em nuvem especializado no gerenciamento, otimização e

entrega de mídia (imagens e vídeos). Ele oferece funcionalidades como upload de arquivos,

transformação de imagens (redimensionamento, recorte, aplicação de filtros), compressão au-

tomática, conversão de formatos e entrega através de Content Delivery Network (Rede de Dis-

tribuição de Conteúdo) (CDN) (Content Delivery Network).

3.4.5 JSON Web Token (JWT)

JSON Web Token (Token Web JSON) (JWT) é um padrão aberto (RFC 7519) para cri-

ação de tokens de acesso baseados em JSON, amplamente utilizado para autenticação e au-

torização em aplicações web e APIs Representational State Transfer (Transferência de Estado

Representacional) (REST)ful (JONES; BRADLEY; SAKIMURA, 2015). Um JWT é composto

por três partes: header, payload e signature. O payload contém informações sobre o usuário

(claims), como ID e roles, e a signature garante a integridade do token.

27

3.4.6 Firebase Cloud Messaging (FCM)

O Firebase Cloud Messaging é um serviço do Google Firebase que permite enviar notifi-

cações push de forma confiável para dispositivos móveis e navegadores web. O Firebase Cloud

Messaging (Mensageria em Nuvem do Firebase) (FCM) gerencia toda a infraestrutura de en-

trega de mensagens, incluindo retry automático, priorização e suporte a múltiplas plataformas.

3.5 Considerações

Este capítulo apresentou os fundamentos teóricos e tecnológicos que sustentam o de-

senvolvimento de aplicações web modernas, abordando metodologias ágeis, testes automati-

zados, ferramentas de controle de versão e tecnologias utilizadas no lado cliente e servidor.

Esses conceitos formam a base técnica que orienta as decisões de implementação e garantem

qualidade, escalabilidade e manutenção eficiente do sistema.

28

4 MATERIAIS E MÉTODOS

O presente capítulo descreve os recursos tecnológicos e metodológicos empregados

no desenvolvimento do UTFPets, abordando tanto as ferramentas utilizadas quanto o processo

adotado para organização das tarefas, versionamento do código e validação do sistema. Inicial-

mente, são apresentados os materiais (ferramentas, linguagens e infraestrutura). Em seguida,

são detalhados os métodos, que compreendem a aplicação de práticas ágeis e o fluxo de de-

senvolvimento do projeto.

4.1 Materiais

As tecnologias empregadas no UTFPets foram escolhidas com base em critérios de ro-

bustez, escalabilidade e facilidade de manutenção. Conforme discutido no Capítulo 3, o projeto

foi estruturado a partir de princípios de desenvolvimento web moderno, arquitetura em camadas

e conteinerização.

O frontend foi implementado com o framework Angular 17, utilizado para construir

uma interface web responsiva e modular. A estilização foi desenvolvida com Angular Material

e TailwindCSS, possibilitando um design limpo e adaptável a diferentes dispositivos.

O backend foi desenvolvido em Laravel 12.x com PHP 8.2, framework escolhido por sua

produtividade, segurança e integração nativa com banco de dados relacionais. O PostgreSQL

foi adotado como sistema gerenciador de banco de dados pela confiabilidade e suporte a con-

sultas complexas.

Para gerenciamento de mídia e otimização de imagens, foi utilizado o serviço Cloudi-

nary. A padronização do ambiente de desenvolvimento e produção foi garantida por meio da

conteinerização com Docker, que possibilitou a execução isolada dos componentes da aplica-

ção.

O controle de versão foi realizado com Git e hospedado no GitHub, que também serviu

como plataforma de integração e entrega contínua (CI/CD) por meio do GitHub Actions. A apli-

cação foi implantada na Google Cloud Platform (GCP), utilizando os serviços Compute Engine

e Cloud SQL, com autenticação gerenciada pelo Cloud IAM e certificados HTTPS fornecidos

pelo Let’s Encrypt.

Por fim, adotou-se uma arquitetura monorepo, centralizando frontend, backend e scripts

de implantação em um único repositório. Essa estrutura facilitou o controle de versões, os testes

integrados e o processo de deploy.

29

4.2 Métodos

O desenvolvimento do UTFPets foi conduzido com base em metodologias ágeis, adap-

tadas ao contexto de um projeto acadêmico individual supervisionado por um orientador. Essa

abordagem favoreceu entregas incrementais e acompanhamento contínuo da evolução do sis-

tema.

4.2.1 Aplicação do Scrum e Kanban

O Scrum serviu como estrutura principal para o gerenciamento do projeto, enquanto

o Kanban foi utilizado de forma complementar para o controle visual das tarefas. O professor

orientador atuou como Product Owner e Scrum Master, responsável pela priorização de funci-

onalidades e pela remoção de impedimentos. O autor desempenhou o papel de desenvolvedor,

executando as etapas de planejamento, implementação e testes.

As atividades foram organizadas em sprints de duas semanas, com planejamento no

início e revisão ao final de cada ciclo. Nessas reuniões, as entregas eram apresentadas ao

orientador, que fornecia feedbacks e sugestões de aprimoramento. O quadro Kanban, integrado

ao GitHub, era composto pelas colunas To Do, Doing, Testing e Done, refletindo o andamento

das tarefas.

4.2.2 Planejamento e controle de tarefas

As funcionalidades foram descritas na forma de Histórias de Usuário, permitindo pri-

orização de acordo com a necessidade dos tutores de pets e clareza nos objetivos de cada

incremento. Um exemplo de história utilizada é:

"Como owner, quero cadastrar um novo pet para acompanhar suas refeições

e manter o controle nutricional."

Cada história foi desdobrada em tarefas menores (issues) vinculadas às branches cor-

respondentes no repositório Git. Periodicamente, as tarefas concluídas eram revisadas e inte-

gradas à branch principal.

4.2.3 Integração contínua e versionamento

O projeto utilizou o fluxo de trabalho GitFlow, definindo ramificações específicas para

funcionalidades, correções e versões estáveis. A automação de integração e entrega contínua

(CI/CD) foi realizada via GitHub Actions, responsável por executar testes, gerar builds e pu-

30

blicar novas versões no ambiente de testes ou produção na GCP. Essa prática reduziu falhas

manuais e aumentou a confiabilidade das entregas.

4.2.4 Ambientes e testes automatizados

O ambiente de desenvolvimento foi padronizado com Docker, garantindo consistência

entre as máquinas e simplificando a implantação. Foram definidos dois ambientes principais:

o ambiente de desenvolvimento, utilizado para testes e ajustes contínuos, e o ambiente de

produção, implantado em contêineres na GCP.

Para garantir a qualidade do código, foram aplicados testes automatizados em múltiplos

níveis. No backend, utilizaram-se PHPUnit para testes de unidade e integração. No frontend,

o Playwright foi empregado para testes end-to-end, simulando interações reais de usuários. A

execução automática desses testes foi integrada ao pipeline de CI/CD, assegurando que cada

alteração passasse por verificação antes da liberação.

4.3 Considerações

O capítulo apresentou os principais recursos tecnológicos e metodológicos utilizados no

projeto UTFPets, destacando o uso de ferramentas modernas e práticas ágeis adaptadas ao

contexto acadêmico. A combinação de metodologias ágeis, integração contínua e conteineriza-

ção garantiu um desenvolvimento organizado, seguro e escalável.

No capítulo seguinte, são descritos os artefatos de análise e projeto do sistema, incluindo

modelagem de dados, diagramas e principais decisões de arquitetura.

31

5 ANÁLISE E PROJETO DO SISTEMA

Este capítulo apresenta a concepção do UTFPets de forma estruturada, abordando a pri-

orização de requisitos por meio do método MoSCoW, a arquitetura conceitual (usuários, locais e

animais), as funcionalidades essenciais, a modelagem do banco de dados e os protótipos de in-

terface (wireframes). Ao final, faz-se referência ao Apêndice A, que detalha a estrutura completa

das tabelas do banco de dados.

5.1 Implementação do método MoSCoW

Para priorizar as funcionalidades do UTFPets, foi aplicado o método MoSCoW, que clas-

sifica os requisitos em quatro categorias:

• Must Have (Essencial): Funcionalidades obrigatórias para o funcionamento do Mini-

mum Viable Product (Produto Mínimo Viável) (MVP), garantindo que a aplicação seja

viável para o primeiro lançamento.

• Should Have (Importante): Funcionalidades que melhoram a experiência do usuário

ou adicionam valor ao sistema, mas não são imprescindíveis na versão inicial.

• Could Have (Desejável): Recursos adicionais que podem ser incluídos no futuro, am-

pliando as capacidades do sistema.

• Won’t Have (Não serão implementadas agora): Funcionalidades que, embora rele-

vantes, não estão no escopo atual e podem ser consideradas em atualizações posteri-

ores.

Este capítulo foca nas funcionalidades Must Have, descritas ao longo das seções se-

guintes, de modo a viabilizar o lançamento inicial do UTFPets.

5.2 Estrutura do aplicativo

O UTFPets organiza os dados de maneira hierárquica para facilitar o gerenciamento

colaborativo. A estrutura conceitual é composta por:

• Usuário: Cada usuário pode cadastrar e gerenciar múltiplos pets, definindo permis-

sões para cuidadores ou estabelecimentos.

• Local: Representa o ambiente onde os pets estão localizados (ex.: residência, clínica

veterinária). Um usuário pode administrar vários locais.

• Pet: Cada animal possui um perfil individual (nome, espécie, raça, idade, peso, histórico

alimentar).

32

• Informações: Incluem registros de alimentação, lembretes médicos e atividades, pro-

porcionando um acompanhamento diário do pet.

Essa organização possibilita ao usuário manejar diversos pets e conceder níveis de

acesso diferenciados, garantindo uma experiência colaborativa no cuidado dos animais.

5.3 Papéis dos usuários e permissões

O UTFPets implementa um sistema de controle de acesso baseado em papéis (Role-

Based Access Control (Controle de Acesso Baseado em Funções) (RBAC) - Role-Based Ac-

cess Control), permitindo que diferentes usuários tenham níveis distintos de permissões sobre

os pets e suas informações. Foram definidos quatro papéis principais, cada um com responsa-

bilidades e permissões específicas.

5.3.1 Owner (Proprietário)

O papel de Owner é atribuído ao usuário que cadastrou originalmente o pet no sistema.

Este papel possui controle total sobre todas as funcionalidades relacionadas ao pet. As permis-

sões do Owner são:

• Visualizar todas as informações do pet (perfil completo, histórico, estatísticas);

• Editar dados do pet (nome, foto, peso, notas);

• Deletar o pet do sistema (soft delete);

• Criar, editar e deletar refeições;

• Criar, editar e deletar lembretes;

• Gerenciar compartilhamento (convidar, aceitar, revogar acesso);

• Alterar papéis de outros usuários compartilhados;

• Transferir ownership (funcionalidade futura).

5.3.2 Editor

O papel de Editor permite que o usuário contribua ativamente com o cuidado do pet,

registrando informações e acompanhando a rotina, mas sem permissão para alterar dados es-

senciais do pet ou gerenciar compartilhamentos. As permissões do Editor são:

• Visualizar todas as informações do pet;

33

• Criar, editar e deletar refeições;

• Visualizar lembretes;

• Registrar tarefas concluídas;

• NÃO PODE: editar dados do pet, deletar o pet, gerenciar compartilhamento.

Casos de uso típicos:

• Familiares que participam da alimentação do pet;

• Dog walkers e pet sitters;

• Profissionais de hotéis para pets.

5.3.3 Viewer (Visualizador)

O papel de Viewer oferece acesso somente leitura às informações do pet, ideal para

situações onde o usuário precisa apenas acompanhar o pet sem interferir na rotina estabelecida.

As permissões do Viewer são:

• Visualizar informações do pet (perfil, fotos);

• Visualizar histórico de refeições;

• Visualizar lembretes;

• NÃO PODE: criar, editar ou deletar qualquer informação.

Casos de uso típicos:

• Familiares que querem acompanhar, mas não participam diretamente dos cuidados;

• Veterinários para consulta do histórico;

• Membros da família em viagens.

5.3.4 Administrador do Sistema

Além dos papéis relacionados aos pets, existe o papel de Administrador do Sistema,

com permissões especiais para gestão global do UTFPets. As permissões do Administrador

são:

• Visualizar todos os usuários cadastrados;

34

• Alterar permissões de usuários (promover/rebaixar administradores);

• Visualizar, editar e deletar todos os pets do sistema (para fins de moderação e manu-

tenção);

• Criar, editar e deletar refeições e lembretes de qualquer pet;

• Acessar logs de auditoria completos;

• Gerenciar configurações globais do sistema.

Importante: As permissões administrativas destinam-se exclusivamente à gestão e mo-

deração do sistema, não substituindo o papel de Owner na administração cotidiana dos pets.

5.3.5 Matriz de permissões

O Quadro 2 apresenta uma visão consolidada das permissões por papel.

Quadro 2 – Matriz de permissões por papel de usuário
Ação Owner Editor Viewer Admin
Visualizar pet Sim Sim Sim Sim
Editar pet Sim - - Sim
Deletar pet Sim - - Sim
Criar/Editar refeição Sim Sim - Sim
Criar/Editar lembrete Sim - - Sim
Gerenciar compartilhamento Sim - - -
Acessar audit log - - - Sim
Gerenciar usuários - - - Sim

Fonte: Autoria própria (2025).

5.4 Histórias de Usuário prioritárias (Must Have)

As histórias de usuário apresentadas a seguir representam as funcionalidades Must

Have do sistema UTFPets, isto é, aquelas consideradas essenciais para o funcionamento mí-

nimo viável do produto. Essas histórias contemplam os quatro papéis do sistema — Owner

(proprietário), Editor (cuidador com permissão de edição), Viewer (cuidador com permissão

apenas de visualização) e Administrador do Sistema (gestão global) — abrangendo as ope-

rações fundamentais para o acompanhamento nutricional, o cuidado colaborativo e a gestão

segura dos dados dos pets.

35

5.4.1 Histórias de Usuário - Owner (Proprietário)

• HU001: Como owner, quero cadastrar um perfil detalhado do meu pet — incluindo

nome, idade, raça, porte e restrições alimentares — para personalizar o acompanha-

mento nutricional.

• HU002: Como owner, quero registrar e monitorar as refeições do meu pet, anotando

horários e quantidades, para assegurar uma dieta equilibrada e regular.

• HU003: Como owner, quero receber lembretes automáticos sobre alimentação e me-

dicação do meu pet, para manter uma rotina consistente de cuidados.

• HU004: Como owner, quero compartilhar as informações do meu pet com cuidadores

autorizados (editors ou viewers), para facilitar o cuidado colaborativo quando eu não

estiver presente.

• HU005: Como owner, quero gerenciar as permissões de acesso dos cuidadores, defi-

nindo quais dados podem ser visualizados ou editados, para garantir a segurança e o

controle das informações.

5.4.2 Histórias de Usuário - Editor (cuidador com edição)

• HU006: Como editor, quero visualizar o perfil completo do pet, incluindo horários e

detalhes de alimentação, para manter o cuidado padronizado conforme as orientações

do owner.

• HU007: Como editor, quero registrar refeições e marcar tarefas como concluídas —

como alimentar ou medicar o pet — para que o owner possa acompanhar as atividades

realizadas.

5.4.3 Histórias de Usuário - Viewer (cuidador com visualização)

• HU008: Como viewer, quero visualizar o perfil do pet e o histórico de refeições, para

acompanhar a rotina do animal sem poder realizar alterações.

• HU009: Como viewer, quero visualizar lembretes e notificações relacionados ao pet,

para estar informado sobre os cuidados necessários.

36

5.4.4 Histórias de Usuário - Administrador do Sistema

• HU010: Como administrador, quero garantir a segurança e a privacidade dos dados dos

usuários, aplicando autenticação e criptografia, para proteger as informações sensíveis

do sistema.

• HU011: Como administrador, quero gerenciar o cadastro de usuários e pets, mantendo

a integridade e a consistência da base de dados.

• HU012: Como administrador, quero acessar logs de auditoria do sistema, para rastrear

ações importantes e garantir a conformidade com políticas de segurança.

Essas histórias de usuário descrevem as principais funcionalidades do sistema sob a

perspectiva de cada perfil, orientando o planejamento e o desenvolvimento incremental do UTF-

Pets.

5.5 Modelagem do Banco de Dados

O banco de dados do sistema foi projetado utilizando o PostgreSQL, seguindo os prin-

cípios de normalização e integridade referencial. A modelagem buscou garantir desempenho,

consistência e facilidade de manutenção, refletindo os principais relacionamentos entre usuá-

rios, pets, locais, lembretes e notificações.

5.5.1 Visão Geral do Modelo Relacional

A Figura 5 apresenta o diagrama entidade-relacionamento (ER) completo do UTFPets,

contemplando as principais entidades do sistema e suas associações. O modelo é composto

por 11 tabelas principais (users, locations, pets, meals, reminders, shared_pets, shared_loca-

tions, notifications, push_subscriptions, audit_logs e a tabela de migrations do Laravel). As 10

primeiras são tabelas de domínio da aplicação, enquanto migrations é uma tabela técnica do

framework Laravel para versionamento do esquema do banco de dados.

37

Figura 5 – Diagrama entidade-relacionamento do banco de dados

Fonte: Autoria própria (2025).

O modelo contempla as seguintes 11 tabelas principais:

• Users: armazena as informações dos usuários e credenciais de acesso;

• Locations: representa os locais físicos onde os pets residem;

• Pets: contém os dados dos animais, como espécie, raça e peso;

• Meals: registra o histórico de refeições, horários e quantidades;

• Reminders: gerencia lembretes e notificações recorrentes;

• SharedPets: controla o compartilhamento de pets entre usuários;

• SharedLocations: controla o compartilhamento de locations entre usuários;

• Notifications: armazena mensagens e alertas enviados aos usuários;

• PushSubscriptions: vincula os dispositivos aos usuários para envio de notificações

push;

38

• AuditLogs: mantém o registro detalhado de auditoria com valores antigos e novos de

alterações;

• Migrations: tabela técnica do Laravel para controle de versionamento do esquema do

banco de dados.

Os relacionamentos principais são:

• Um usuário pode gerenciar vários pets e locations;

• Cada pet pertence a um usuário e opcionalmente a uma location;

• Cada pet possui várias refeições e lembretes;

• As tabelas SharedPets e SharedLocations permitem colaboração entre usuários;

• Um usuário pode receber múltiplas notificações e possuir várias assinaturas push;

• Todas as entidades críticas possuem rastreabilidade via AuditLogs.

Essa estrutura garante a consistência das operações e a extensibilidade do sistema,

permitindo a adição de novas funcionalidades sem impacto significativo na base de dados. O

detalhamento completo das tabelas, incluindo atributos, chaves e restrições, encontra-se no

Apêndice A.

5.5.2 Evolução da modelagem durante o desenvolvimento

Durante o processo de desenvolvimento, a modelagem do banco de dados passou por

uma evolução arquitetural importante que ampliou significativamente as capacidades do sis-

tema. Inicialmente, a modelagem conceitual previa que os pets fossem vinculados diretamente

aos usuários através de uma relação simples entre as tabelas users e pets. No entanto,

durante a implementação das funcionalidades essenciais, identificou-se a oportunidade de in-

troduzir o conceito de Locations (locais físicos), criando uma hierarquia organizacional mais

flexível e realista.

A introdução da tabela locations trouxe os seguintes benefícios:

• Organização espacial: Permite que usuários gerenciem pets distribuídos em diferen-

tes locais físicos (residências, clínicas veterinárias, hotéis para pets);

• Compartilhamento hierárquico: Possibilita compartilhar uma location inteira (via

shared_locations), propagando automaticamente o acesso a todos os pets vin-

culados àquele local;

39

• Configuração de timezone: Cada location possui seu próprio fuso horário

(timezone), garantindo que lembretes sejam disparados nos horários corretos, in-

dependentemente da localização física dos pets;

• Escalabilidade: Facilita a expansão futura do sistema para cenários profissionais (clí-

nicas, pet shops) onde múltiplos animais residem no mesmo local.

Esta mudança arquitetural demandou ajustes incrementais na estrutura do banco de

dados:

• Adição da tabela locations com relacionamento 1 → * com users;

• Inclusão do campo location_id (nullable) na tabela pets, permitindo que pets

sejam opcionalmente associados a uma location;

• Criação da tabela shared_locations para suportar compartilhamento de locais

completos;

• Ajustes nas policies de autorização para verificar permissões tanto por pet individual

quanto por location.

Essa refatoração foi realizada de forma controlada através do sistema de migrations do

Laravel, garantindo versionamento e rastreabilidade das alterações. O resultado final é uma

modelagem mais robusta e adequada aos casos de uso reais identificados durante o desenvol-

vimento, mantendo a integridade dos dados e a performance do sistema.

5.6 Protótipos das telas

O design de interface do UTFPets foi concebido seguindo princípios de User Experience

(User Experience (Experiência do Usuário) (UX)) e User Interface (UI), priorizando usabilidade,

acessibilidade e consistência visual. Esta seção apresenta os protótipos implementados das

principais telas do sistema.

5.6.1 Telas de autenticação

As telas de login e cadastro são os pontos de entrada dos usuários no UTFPets, desen-

volvidas para serem simples, intuitivas e transmitirem confiança. A Figura 6 apresenta ambas

as interfaces lado a lado.

40

Figura 6 – Telas de autenticação do UTFPets

Tela de login Tela de cadastro
Fonte: Autoria própria (2025).

Elementos principais da tela de login:

• Logo do UTFPets centralizado;

• Campo de e-mail com validação de formato;

• Campo de senha com opção de visualizar/ocultar;

• Botão “Entrar” com destaque visual;

• Links para recuperação de senha e criação de conta.

5.6.2 Dashboard (Página Inicial)

Após o login, o usuário é direcionado ao Dashboard, mostrado na Figura 7, que apre-

senta uma visão geral dos pets e atividades recentes.

Figura 7 – Dashboard do UTFPets

Fonte: Autoria própria (2025).

Componentes do Dashboard:

• Cards dos pets cadastrados com fotos;

• Lembretes do dia em destaque;

• Resumo de refeições recentes;

• Botão flutuante para ações rápidas;

• Menu de navegação inferior.

41

5.6.3 Gerenciamento de pets

A Figura 8 apresenta as interfaces de listagem e cadastro de pets, permitindo navegação

rápida e registro completo de informações com upload de foto via Cloudinary.

Figura 8 – Sistema de gerenciamento de pets

Listagem de pets Cadastro de pet
Fonte: Autoria própria (2025).

5.6.4 Gerenciamento de locais

O sistema de gerenciamento de locais onde os pets residem está ilustrado na Figura 9,

que apresenta tanto a listagem quanto o cadastro de locations.

Figura 9 – Sistema de gerenciamento de locations

Listagem de locations Cadastro de location
Fonte: Autoria própria (2025).

5.6.5 Gerenciamento de refeições

A Figura 10 apresenta a interface para registro e acompanhamento das refeições dos

pets, com histórico e estatísticas.

42

Figura 10 – Página de gerenciamento de refeições

Fonte: Autoria própria (2025).

5.6.6 Sistema de lembretes

O sistema de lembretes com recorrência avançada e notificações automáticas está apre-

sentado na Figura 11.

Figura 11 – Sistema de gerenciamento de lembretes

Listagem de lembretes Formulário de criação
Fonte: Autoria própria (2025).

5.6.7 Sistema de compartilhamento

O sistema completo de compartilhamento colaborativo com controle de permissões está

apresentado na Figura 12, que mostra a página de gerenciamento e o formulário de comparti-

lhamento, além da Figura 13 que apresenta a gestão de convites pendentes.

Figura 12 – Sistema de gerenciamento de compartilhamentos

Página de gerenciamento Formulário de compartilhamento
Fonte: Autoria própria (2025).

43

Figura 13 – Página de convites pendentes

Fonte: Autoria própria (2025).

5.6.8 Sistema de notificações

A Figura 14 apresenta o sistema completo de notificações com histórico e controle de

leitura, mostrando tanto o modal de notificações quanto a página completa.

Figura 14 – Sistema de notificações do UTFPets

Modal de notificações
Página completa de notificações

Fonte: Autoria própria (2025).

5.6.9 Painel administrativo

O painel administrativo completo para gestão do sistema está ilustrado nas figuras a

seguir, apresentando as diferentes interfaces e permissões disponíveis para usuários comuns e

administradores.

Figura 15 – Comparação entre perfis de usuário

Perfil de usuário padrão Perfil com permissões administrativas
Fonte: Autoria própria (2025).

44

Figura 16 – Painel de gerenciamento de usuários (Admin)

Fonte: Autoria própria (2025).

Figura 17 – Visualização de todos os pets (Admin)

Fonte: Autoria própria (2025).

Figura 18 – Painel de auditoria e logs do sistema (Admin)

Fonte: Autoria própria (2025).

5.6.10 Considerações sobre o design

O design das interfaces seguiu os seguintes princípios:

• Consistência Visual: Uso padronizado de cores, tipografia (Roboto) e componentes

do Angular Material e TailwindCSS;

• Responsividade: Layouts adaptativos que funcionam em dispositivos móveis, tablets

e desktops;

• Acessibilidade: Contraste adequado (Web Content Accessibility Guidelines (Diretrizes

de Acessibilidade para Conteúdo Web) (WCAG) 2.1), tamanhos de toque adequados

(44x44px mínimo), navegação por teclado;

45

• Feedback Visual: Animações suaves e estados de loading claros para melhor experi-

ência do usuário;

• Progressive Enhancement: Funcionalidades que degradam graciosamente em nave-

gadores mais antigos.

Todas as telas foram desenvolvidas como Single Page Application (SPA) utilizando An-

gular 17, proporcionando transições fluidas e experiência próxima a aplicativos nativos.

5.7 Considerações

A análise e o projeto do UTFPets abordaram o método MoSCoW para priorizar as fun-

cionalidades, estabelecendo as características fundamentais (Must Have) que compõem a pri-

meira versão do sistema. Também foi definida a arquitetura hierárquica (usuário, local, animal),

o modelo de banco de dados em PostgreSQL e a concepção das telas principais por meio de

wireframes.

46

6 DESENVOLVIMENTO DO SISTEMA

Este capítulo apresenta o processo de desenvolvimento do UTFPets, realizado entre

maio e novembro de 2025, totalizando 100 commits distribuídos ao longo de sete meses. O

desenvolvimento caracterizou-se por ciclos iterativos e incrementais, organizados em três fases

principais: estruturação inicial, implementação das funcionalidades essenciais e transição para

ambiente de produção.

Embora os conceitos de Scrum e sprints tenham sido apresentados como fundamen-

tação metodológica nos capítulos anteriores, o desenvolvimento adotou uma abordagem adap-

tada ao contexto acadêmico individual, com iterações mais flexíveis e organizadas por conjuntos

funcionais. A fase inicial (maio de 2025) concentrou-se na validação arquitetural, seguida por

um período de suspensão das atividades devido a compromissos acadêmicos, e retomada em

outubro de 2025 com foco no desenvolvimento das funcionalidades prioritárias. Por essa razão,

a narrativa deste capítulo está organizada por fases funcionais, refletindo a dinâmica real de

implementação do sistema.

6.1 Arquitetura geral do sistema

Antes de detalhar o desenvolvimento das funcionalidades, esta seção apresenta uma

visão geral da arquitetura do UTFPets e a forma como os principais componentes se integram.

6.1.1 Camadas e organização do projeto

O UTFPets adota uma arquitetura em camadas baseada no padrão MVC, na qual o

Laravel 12.x implementa a camada de controle e lógica de negócio, enquanto o Angular 17

compõe a camada de apresentação. A comunicação entre as camadas é feita por meio de uma

API RESTful que troca dados em formato JSON.

O projeto foi estruturado em um monorepo, reunindo em um único repositório Git o

código do backend, do frontend, os arquivos de configuração do Nginx, scripts de deploy e testes

End-to-End (Extremo a Extremo) (E2E). Essa organização facilita o versionamento atômico, os

testes integrados e o deploy sincronizado de todas as partes do sistema.

6.1.2 Backend e persistência de dados

O backend é composto por 11 controllers e 10 models organizados em Laravel, respon-

sáveis por implementar autenticação, cadastro de usuários, gerenciamento de pets, refeições,

lembretes, notificações, compartilhamentos e operações administrativas. A persistência de da-

dos é realizada em um banco PostgreSQL, cujo esquema é versionado por meio de 17 migra-

47

tions, que criam e mantêm tabelas como users, pets, meals, reminders, locations,

notifications, shared_pets, shared_locations e audit_logs.

Camadas adicionais de segurança e organização incluem middlewares para autentica-

ção e autorização, policies para controle de acesso a recursos específicos e jobs para proces-

samento assíncrono de lembretes e envio de notificações.

6.1.3 Autenticação, notificações e mídia

A autenticação dos usuários é implementada com JSON Web Tokens (JWT), utilizando

o pacote php-open-source-saver/jwt-auth. Após o login, o token é armazenado no

cliente e enviado no cabeçalho Authorization em cada requisição, sendo validado por

middlewares no backend.

As notificações push são gerenciadas por meio do Firebase Cloud Messaging (FCM),

integrado ao PWA. Eventos relevantes (como lembretes próximos ou compartilhamentos acei-

tos) disparam notificações através de events e listeners, que enviam mensagens para os dispo-

sitivos inscritos.

As imagens dos pets são armazenadas e otimizadas pelo serviço Cloudinary, que rea-

liza compressão e entrega via CDN, reduzindo o tempo de carregamento das telas e o consumo

de banda.

6.1.4 Infraestrutura e conteinerização

Em ambiente de produção, o UTFPets é executado em contêineres Docker hospeda-

dos na Google Cloud Platform (GCP). A aplicação é dividida, em produção, em cinco con-

têineres principais: backend Laravel, frontend Angular (build estático), Nginx (proxy reverso),

Cloud SQL Proxy (conexão segura com o banco gerenciado) e Certbot (obtenção e renovação

automática de certificados Secure Sockets Layer (Camada de Soquetes Seguros) (SSL)/TLS).

O acesso externo é realizado via Nginx, que recebe as requisições em HTTPS,

encaminha-as ao backend e serve os arquivos estáticos do frontend. O banco de dados é for-

necido pelo serviço gerenciado Cloud SQL, com backups automáticos e alta disponibilidade.

6.1.5 Fluxo de requisições

De forma geral, cada requisição enviada pela interface Angular percorre o seguinte cami-

nho: é recebida pelo servidor Nginx em HTTPS, encaminhada ao backend Laravel, validada por

middlewares de autenticação JWT e autorização, processada pelo controller correspondente e,

por fim, tem seus dados persistidos ou consultados no PostgreSQL por meio do Eloquent ORM.

O resultado é então retornado ao cliente em formato JSON.

48

Com essa visão geral da arquitetura consolidada, as seções seguintes descrevem como

o sistema foi construído ao longo das sprints, bem como as principais decisões tomadas em

cada etapa.

6.2 Fase inicial: estrutura base e prototipação

6.2.1 Contexto e planejamento

Ao iniciar o desenvolvimento em maio de 2025, a primeira fase concentrou-se em es-

tabelecer os alicerces tecnológicos do projeto. O objetivo principal era validar as escolhas ar-

quiteturais e criar um protótipo funcional que demonstrasse a viabilidade técnica da solução

proposta, correspondendo à implementação parcial das histórias de usuário HU001 (cadastro

de pets) e HU010 (autenticação e segurança).

6.2.2 Atividades realizadas

A fase inicial concentrou-se em três frentes principais de trabalho. Primeiramente, foi cri-

ado o repositório GitHub "TCC_UTFPets_API", estabelecendo a estrutura inicial tanto do projeto

Laravel para backend quanto do projeto Angular para frontend, além da configuração básica do

.gitignore para controle de versionamento adequado.

No backend, foi realizada a instalação do Laravel 12 com PHP 8.2, seguida pela defi-

nição das primeiras migrations (users e pets), estruturação inicial de Controllers e Models, e

configuração das rotas API fundamentais. Paralelamente, o frontend foi inicializado com An-

gular 17, estabelecendo a estrutura básica de componentes, configuração de roteamento e

implementação das primeiras telas (login e cadastro).

As funcionalidades implementadas nesta etapa incluíram o sistema básico de autentica-

ção, o Create, Read, Update, Delete (Criar, Ler, Atualizar e Excluir) (CRUD) inicial de pets e as

primeiras rotas de API, formando a base sobre a qual o restante do sistema seria construído.

6.2.3 Resultados da fase inicial

Ao final dessa primeira fase em maio de 2025, obteve-se um protótipo funcional com

autenticação básica e listagem de pets, validando a arquitetura proposta. A estrutura base do

projeto estava definida, incluindo a primeira versão do README documentado. Esse resultado

forneceu confiança para avançar com a implementação das funcionalidades essenciais do sis-

tema.

Após a conclusão dessa etapa inicial em maio, as atividades de desenvolvimento foram

suspensas até outubro devido a compromissos acadêmicos. Em outubro, o projeto foi retomado

49

com foco na implementação das funcionalidades essenciais (Must Have) definidas pelo método

MoSCoW.

6.3 Fase principal: implementação das funcionalidades essenciais

6.3.1 Contexto da retomada

Com a retomada do desenvolvimento em outubro de 2025, esta fase concentrou-se na

implementação do núcleo funcional do sistema. O objetivo era desenvolver as funcionalidades

categorizadas como Must Have, essenciais para viabilizar o MVP. Esse período registrou aproxi-

madamente 40 commits e representou a consolidação das principais capacidades da aplicação,

implementando as histórias de usuário HU002 a HU007.

6.3.2 Narrativa do desenvolvimento

O desenvolvimento neste período seguiu uma sequência lógica de prioridades. Inicial-

mente, consolidou-se o sistema de autenticação com JWT (HU010), implementando o pa-

cote php-open-source-saver/jwt-auth versão 2.2. O AuthController foi estendido para suportar

registro, login, logout e renovação de tokens, enquanto no frontend foram criados AuthGuard

e AuthInterceptor para gerenciar o fluxo de autenticação. Esse trabalho garantiu que todas as

requisições subsequentes fossem protegidas e vinculadas ao usuário autenticado, conforme

ilustrado nas telas de login e cadastro apresentadas nas Figuras 6a e 6b.

Com a autenticação estabelecida, a próxima etapa concentrou-se no sistema de ge-

renciamento de pets (HU001), implementando o CRUD completo através do PetController. O

Model Pet foi estruturado com relacionamentos complexos (User, Location, Meals, SharedPets,

Reminders), permitindo a navegação entre entidades. A integração com Cloudinary possibili-

tou o upload e otimização automática de fotos, enquanto o soft delete garantiu que registros

pudessem ser recuperados caso necessário. No frontend, foram desenvolvidos componentes

modulares (pet-list, pet-form, pet-detail, pet-card) seguindo a arquitetura de Standalone Com-

ponents do Angular 17, conforme mostrado na Figura 8a e 8b.

O endpoint POST /api/pets exemplifica o padrão de interação entre frontend e bac-

kend adotado no UTFPets. A Listagem 1 apresenta uma requisição típica para cadastro de pet.

50

Listagem 1 – Requisição HTTP para cadastro de pet

1 POST https://api.utfpets.online/api/pets
2 Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGc...
3 Content-Type: application/json

1 {
2 "name": "Rex",
3 "species": "dog",
4 "breed": "Labrador",
5 "birth_date": "2020-05-15",
6 "weight": 30.5,
7 "gender": "male",
8 "location_id": "550e8400-e29b-41d4-a716-446655440000"
9 }

Fonte: Autoria própria (2025).

Ao receber a requisição, o middleware de autenticação verifica o token JWT, e o control-

ler responsável (PetController@store) realiza a validação dos dados, checa as permis-

sões do usuário sobre a location informada e, em seguida, cria o registro no banco PostgreSQL.

Caso uma foto seja enviada, o arquivo é enviado ao Cloudinary, que retorna uma Uniform Re-

source Locator (Localizador Uniforme de Recursos) (URL) pública para exibição. A Listagem 2

mostra a resposta retornada em caso de sucesso.

Listagem 2 – Resposta HTTP de sucesso ao cadastrar pet

1 HTTP/1.1 201 Created
2 Content-Type: application/json
3

4 {
5 "id": "123e4567-e89b-12d3-a456-426614174000",
6 "name": "Rex",
7 "species": "dog",
8 "breed": "Labrador",
9 "birth_date": "2020-05-15",

10 "weight": 30.5,
11 "gender": "male",
12 "photo_url": "https://res.cloudinary.com/...",
13 "location_id": "550e8400-e29b-41d4-a716-446655440000",
14 "created_at": "2025-11-05T14:30:00.000000Z",
15 "updated_at": "2025-11-05T14:30:00.000000Z"
16 }

Fonte: Autoria própria (2025)..

51

Esse exemplo ilustra o padrão RESTful adotado na API do UTFPets e a forma como as

camadas de autenticação, validação, persistência e integração com serviços externos (Cloudi-

nary) se articulam em uma única operação.

Na sequência, foi desenvolvido o sistema de refeições (HU002), criando o MealCon-

troller com funcionalidades de agendamento (scheduled_for) e controle de consumação

(consumed_at). O sistema permite registrar diferentes tipos de alimento com quantidades e

unidades específicas, além de oferecer filtros por pet e período temporal. Essa funcionalidade

permite aos owners monitorar a dieta de seus pets de forma detalhada, conforme ilustrado na

Figura 10.

Em paralelo, implementou-se o sistema de compartilhamento colaborativo (HU004,

HU005, HU008 e HU009), um dos diferenciais do UTFPets. O SharedPetController gerencia

convites com três estados (pending, accepted, revoked) e três papéis distintos (owner, editor,

viewer), cada um com permissões granulares definidas na Quadro 2. O sistema valida as per-

missões em cada operação através de Policies, garantindo que usuários somente executem

ações autorizadas. No frontend, o share-dialog facilita o envio de convites, enquanto o share-list

exibe os compartilhamentos ativos, conforme mostrado nas Figura 12a, Figura 12b e Figura 13.

Paralelamente ao desenvolvimento das funcionalidades, foi estabelecida uma cultura

de testes automatizados. Ao final desse ciclo, o sistema contava com mais de 88 testes imple-

mentados em PHPUnit, cobrindo cenários de autenticação, gerenciamento de pets, refeições e

compartilhamento. Os feature tests simulam fluxos completos de usuário, enquanto as factories

geram dados de teste consistentes. A estratégia RefreshDatabase garante isolamento entre

testes, eliminando efeitos colaterais.

6.3.3 Entregas e aprendizados

Ao final dessa fase, a parte principal do sistema estava totalmente funcional, com upload

de imagens otimizadas, compartilhamento colaborativo operacional e cobertura robusta de tes-

tes. A documentação da API foi consolidada utilizando Swagger/OpenAPI, facilitando o entendi-

mento dos endpoints e acelerando a integração frontend-backend.

Um aprendizado importante desse período foi a necessidade de refatorações incremen-

tais. Inicialmente, os pets eram vinculados diretamente aos usuários, mas identificou-se a opor-

tunidade de introduzir o conceito de Locations, criando uma hierarquia mais flexível. Essa mu-

dança arquitetural, embora tenha demandado ajustes no código existente, ampliou significativa-

mente as possibilidades de uso do sistema.

52

6.4 Fase avançada: funcionalidades diferenciadas e PWA

6.4.1 Contexto e motivação

Com o núcleo funcional consolidado, esta fase voltou-se para funcionalidades avançadas

que diferenciariam o UTFPets de soluções similares. Este período registrou aproximadamente

36 commits e teve como principais entregas: a formalização do conceito de Locations, sistema

de lembretes com recorrência complexa (HU003), notificações multicanal, transformação em

PWA e painel administrativo (HU011 e HU012).

6.4.2 Narrativa do desenvolvimento

Nesta fase, formalizou-se o sistema de Locations, transformando o conceito inicial em

uma funcionalidade completa. O LocationController foi implementado com CRUD completo, en-

quanto o Model Location estabeleceu relacionamentos com Users e Pets. Uma inovação impor-

tante foi o SharedLocationController, que permite compartilhar locations inteiras, propagando

automaticamente o acesso a todos os pets vinculados. Cada location possui seu próprio time-

zone, garantindo que lembretes sejam disparados nos horários corretos independentemente da

localização física. No frontend, os componentes location-list, location-form e location-detail ofe-

recem interface intuitiva para gerenciamento espacial, conforme ilustrado na Figura 9a e Figura

9b.

Em seguida, desenvolveu-se o sistema de lembretes com recorrência avançada

(HU003), uma das funcionalidades mais complexas do UTFPets. O ReminderController expõe

7 endpoints que suportam regras de repetição (none, daily, weekly, custom) através do enum

RepeatRule. O sistema utiliza jobs assíncronos com idempotência, executados por um schedu-

ler Laravel que verifica lembretes pendentes a cada minuto. Customizações avançadas incluem

dias da semana específicos (days_of_week), janelas de horário ativas (active_window),

substituição de timezone (timezone_override) e tempo de adiamento (snooze). As ações

de snooze e complete permitem aos usuários gerenciar lembretes de forma flexível, conforme

mostrado na Figura 11a e Figura 11b.

O sistema de notificações multicanal foi implementado em paralelo, criando o Notifi-

cationController com suporte a três canais (db, email, push) através do enum NotificationChan-

nel. O sistema gerencia estados de notificação (queued, sent, failed, read) e oferece histórico

com paginação, contador de mensagens não lidas e marcação individual ou em lote, conforme

apresentado na Figura 14a e Figura 14b. A arquitetura baseada em Events e Listeners per-

mite que notificações sejam disparadas automaticamente em resposta a eventos do sistema,

promovendo desacoplamento e manutenibilidade.

53

A transformação do UTFPets em um PWA completo foi realizada na sequência. Utili-

zando o pacote @angular/service-worker do Angular, foi configurado um Service Worker que

intercepta requisições de rede e implementa cache inteligente de assets e respostas de API.

O manifest.webmanifest define metadados que permitem instalação em dispositivos móveis e

desktop. A integração com Firebase Cloud Messaging habilita notificações push mesmo com o

aplicativo fechado, aumentando significativamente o engajamento dos usuários. O modo offline

garante que funcionalidades básicas permaneçam acessíveis sem conexão à internet.

Complementando as funcionalidades essenciais, implementou-se o painel administra-

tivo (HU011 e HU012), criando o AdminController protegido por middleware específico. O pai-

nel permite listar e gerenciar usuários, alterar permissões (is_admin flag), visualizar todos os

pets cadastrados no sistema e acessar logs de auditoria. No frontend, os componentes admin-

users e admin-dashboard oferecem interface dedicada para administradores, conforme ilustrado

na Figura 15a, Figura 15b, Figura 16, Figura 17 e Figura 18.

Complementando as funcionalidades administrativas, criou-se a infraestrutura de audi-

toria, com a tabela audit_logs registrando ações críticas (created, updated, deleted, vi-

ewed). O sistema armazena alterações em formato JSON, incluindo valores antigos e novos,

além de capturar IP address e user agent. Embora a trait Auditable tenha sido estruturada para

futura implementação automática, a base para rastreabilidade completa estava estabelecida.

6.4.3 Entregas e reflexões

Ao final dessa fase, o UTFPets havia evoluído significativamente. As funcionalidades

avançadas estavam totalmente operacionais: PWA com suporte offline, lembretes com recor-

rência complexa, notificações multicanal e painel administrativo. A documentação técnica foi

expandida para 17 arquivos, cobrindo arquitetura, API e procedimentos de deploy.

Um desafio importante desse período foi o balanceamento entre complexidade técnica e

usabilidade. O sistema de lembretes, por exemplo, oferece configurações avançadas (timezone

override, active windows) sem comprometer a simplicidade para usuários básicos que desejam

apenas agendar lembretes simples. Essa abordagem de "potência progressiva"tornou-se um

princípio de design do projeto.

6.5 Fase final: deploy, produção e refinamentos

6.5.1 Contexto da transição para produção

A fase final do desenvolvimento (final de outubro e novembro de 2025) marcou a tran-

sição do UTFPets do ambiente de desenvolvimento para produção. Este período registrou 36

commits, concentrados em infraestrutura, automação de deploy, otimizações de performance e

54

refinamentos de interface. O objetivo era disponibilizar o sistema de forma confiável, segura e

com experiência de usuário polida.

6.5.2 Narrativa do desenvolvimento

Nesta fase final, o foco principal foi a infraestrutura de produção no Google Cloud

Platform. Foi provisionada uma Virtual Machine (Máquina Virtual) (VM) e2-small no Compute

Engine (Debian 12, região southamerica-east1-b), escolhida por sua proximidade geográfica

e custo-benefício adequado para o projeto. O Cloud SQL PostgreSQL foi configurado como

serviço gerenciado, eliminando preocupações com backups, atualizações e alta disponibilidade.

O Cloud SQL Proxy foi implementado para conexão segura entre a aplicação e o banco de

dados, utilizando Service Accounts e políticas Identity and Access Management (Gerenciamento

de Identidade e Acesso) (IAM) restritivas. Docker e Docker Compose foram instalados na VM,

permitindo orquestração de 5 containers: app (backend Laravel), cloud-sql-proxy, nginx (proxy

reverso), certbot (certificados SSL) e frontend (build Angular).

Em paralelo, implementou-se o pipeline CI/CD com GitHub Actions, criando o work-

flow deploy-vm.yml com trigger automático em push para a branch main. O pipeline executa:

backup automático do banco de dados, deploy via gcloud scp, build de containers Docker, exe-

cução de migrations e otimizações Laravel, e health check automático. Um script PowerShell foi

desenvolvido para sincronizar secrets entre o ambiente local e o GitHub, facilitando a manuten-

ção de variáveis de ambiente sensíveis.

A configuração de HTTPS com Let’s Encrypt foi concluída utilizando Certbot contai-

nerizado para obtenção e renovação automática de certificados SSL/TLS. O Nginx foi configu-

rado para servir tráfego HTTPS e redirecionar automaticamente requisições HTTP. Três domí-

nios foram estabelecidos: https://utfpets.online (frontend), https://api.utfpets.online (backend) e

https://api.utfpets.online/swagger (documentação interativa).

Foram realizadas otimizações de performance fundamentais. No backend, foram apli-

cados cache de configuração Laravel e otimização de queries com índices estratégicos. No

frontend, a compilação foi configurada em modo produção (Angular build –prod) com lazy lo-

ading de módulos, reduzindo significativamente o tempo de carregamento inicial. O Nginx foi

ajustado para compressão gzip, diminuindo o tamanho dos assets transferidos.

Paralelamente, a interface passou por um redesign completo com TailwindCSS, ado-

tando componentes modernos e responsivos. O Pet Form foi redesenhado com validações vi-

suais claras, enquanto o Pet List recebeu melhorias de debugging e usabilidade. Um design

system consistente foi estabelecido, garantindo uniformidade visual em toda a aplicação.

A reestruturação do projeto em arquitetura Monorepo consolidou backend, frontend,

testes E2E, configurações nginx e scripts de automação em uma estrutura organizada (bac-

kend/, frontend/, tests/e2e/, nginx/, scripts/). O README foi completamente reescrito, incluindo

55

Listagem 3 – Estrutura do repositório monorepo do UTFPets

1 TCC_UTFPets_API/
2 backend/
3 app/
4 Http/
5 Controllers/
6 Middleware/
7 Models/
8 Enums/
9 database/

10 migrations/
11 tests/ (88+ testes PHPUnit)
12 frontend/
13 src/
14 app/
15 auth/
16 pets/
17 meals/
18 reminders/
19 ... (demais features)
20 assets/
21 angular.json
22 nginx/
23 nginx.conf
24 tests/
25 e2e/ (Testes Playwright)
26 docker-compose.yml

Fonte: Autoria própria (2025)..

instruções de instalação, desenvolvimento, deploy e arquitetura do sistema. A Listagem 3 apre-

senta um resumo da organização final.

Os testes E2E com Playwright foram configurados nessa fase final, criando a estrutura

/tests/e2e/ com cenários que simulam fluxos completos de usuário. Esses testes foram integra-

dos ao pipeline CI/CD, garantindo que cada deploy somente ocorra após validação automática

dos fluxos críticos.

A fase final demandou 32 commits de ajustes incrementais, incluindo correções de

configuração nginx, refinamentos no health check, ajustes no setup de SSL, melhorias no ser-

vice worker do PWA, correções de timeout e permissões, e otimizações no pipeline CI/CD. Esse

processo iterativo de refinamento demonstrou a importância de testes em ambiente de produção

real e a necessidade de monitoramento contínuo.

56

6.5.3 Entregas e lições do deploy

Ao final dessa fase de deploy, o UTFPets estava em produção em https://utfpets.online,

com API documentada em https://api.utfpets.online/swagger. O HTTPS estava configurado com

certificados válidos, o deploy automático funcionava perfeitamente via GitHub Actions, a per-

formance estava otimizada (tempos de resposta < 200ms) e a interface apresentava design

moderno e responsivo.

O processo de deploy revelou lições valiosas. A configuração inicial do CI/CD deman-

dou múltiplas iterações (32 commits de ajustes), evidenciando que automação de infraestrutura

é complexa mas fundamental. A escolha por Monorepo simplificou o versionamento atômico,

permitindo que mudanças no backend e frontend fossem deployadas sincronizadamente. O uso

de containers Docker garantiu paridade entre ambientes de desenvolvimento e produção, elimi-

nando o clássico problema "funciona na minha máquina".

6.6 Considerações Finais do Desenvolvimento

O desenvolvimento do UTFPets foi concluído com sucesso em 7 meses (Maio-

Novembro 2025), resultando em uma aplicação web completa e robusta com as seguintes mé-

tricas:

6.6.1 Estatísticas finais

O desenvolvimento ocorreu no período de maio a novembro de 2025, totalizando 100

commits distribuídos ao longo dos sete meses. A distribuição temporal dos commits reflete a

dinâmica de trabalho adotada: 4 commits em maio de 2025 concentraram-se na inicialização

do projeto, 76 commits em outubro de 2025 representaram o desenvolvimento principal das

funcionalidades essenciais, e 32 commits em novembro de 2025 foram dedicados ao deploy e

ajustes finais em ambiente de produção.

6.6.2 Métricas quantitativas do sistema

A Tabela 1 apresenta um resumo quantitativo dos principais componentes desenvolvidos

no UTFPets, evidenciando a complexidade e abrangência do sistema.

57

Tabela 1 – Métricas quantitativas do sistema UTFPets

Componente Quantidade Descrição

Backend
Controllers 11 AuthController, PetController, Me-

alController, ReminderController,
NotificationController, SharedPet-
Controller, SharedLocationController,
LocationController, AdminController,
UserController, PushSubscriptionCon-
troller

Models 10 User, Pet, Meal, Reminder, Notification,
SharedPet, SharedLocation, Location,
PushSubscription, AuditLog

Migrations 17 Estrutura completa do banco de dados
com suporte a UUID

Enums 7 RepeatRule, ReminderStatus, Shared-
PetRole, InvitationStatus, Notification-
Channel, NotificationStatus

Testes Automatizados 88+ Testes unitários e de integração com
PHPUnit

Banco de Dados
Tabelas 11 users, pets, meals, reminders, notifica-

tions, shared_pets, shared_locations,
locations, push_subscriptions, audit_-
logs, audit

API RESTful
Endpoints 45+ Distribuídos entre autenticação, pets,

refeições, lembretes, notificações,
compartilhamento e administração

Frontend
Features 8 auth, pets, meals, reminders, locations,

sharing, notifications, admin

Componentes Angular 40+ Componentes standalone organizados
por feature

Infraestrutura
Containers Docker 5 app, cloud-sql-proxy, nginx, certbot,

frontend

Documentação
Arquivos Técnicos 17 Documentação detalhada de arquite-

tura, API e deployment

Swagger/OpenAPI 1 Documentação interativa completa da
API

Essas métricas demonstram a robustez e complexidade do sistema desenvolvido, que

implementa funcionalidades avançadas mantendo código limpo, testável e bem documentado.

58

6.6.3 Arquitetura e código

A arquitetura final do sistema compreende, no backend, 11 Controllers, 10 Models, 17

Migrations e 7 Enums que estruturam toda a lógica de negócio. O frontend foi organizado em

8 features principais com múltiplos componentes reutilizáveis. A qualidade do código é assegu-

rada por mais de 88 testes automatizados implementados em PHPUnit. A documentação téc-

nica conta com 17 arquivos detalhados que cobrem arquitetura, deployment e boas práticas. A

API RESTful completa está documentada com Swagger, facilitando a integração e manutenção

do sistema.

6.6.4 Tecnologias utilizadas

O stack tecnológico adotado combina ferramentas modernas e consolidadas no mer-

cado. No backend, utilizou-se Laravel 12 com PHP 8.2 e PostgreSQL como sistema gerenciador

de banco de dados. O frontend foi desenvolvido em Angular 17, estilizado com TailwindCSS e

Angular Material para componentes visuais. A infraestrutura de produção baseia-se em Doc-

ker para containerização, Google Cloud Platform (Plataforma de Nuvem do Google) (GCP)

para hospedagem, Nginx como servidor web e proxy reverso, e Let’s Encrypt para certificados

SSL/TLS. Serviços complementares incluem Cloudinary para otimização de imagens, Firebase

FCM para notificações push e GitHub Actions para automação de CI/CD.

6.6.5 Funcionalidades implementadas

Todas as 12 histórias de usuário apresentadas (HU001 a HU012) foram completamente

implementadas na versão atual do UTFPets. Não houve alterações, remoções ou adição de

novas histórias durante o processo de desenvolvimento, garantindo que todos os requisitos

essenciais definidos na fase de análise foram atendidos. O sistema implementado contempla

integralmente:

• HU001 a HU005 (Owner): Gerenciamento completo de pets, refeições, lembretes e

compartilhamento com controle de permissões;

• HU006 e HU007 (Editor): Visualização e registro de atividades com permissões de

edição controladas;

• HU008 e HU009 (Viewer): Acesso somente leitura para acompanhamento sem inter-

ferência;

• HU010 a HU012 (Administrador): Segurança, gestão de usuários e auditoria completa

do sistema.

59

O sistema implementa um conjunto completo de funcionalidades que atendem aos ob-

jetivos propostos. A autenticação JWT garante segurança no acesso aos recursos. O CRUD

de pets inclui upload otimizado de imagens via Cloudinary. O sistema de refeições mantém

histórico detalhado de alimentação com quantidades e horários. O compartilhamento colabo-

rativo suporta tanto pets individuais quanto locations inteiras, com três níveis de permissões

(owner, editor, viewer). Os lembretes oferecem recorrência avançada com suporte a diferentes

timezones. O sistema de notificações opera em três canais (banco de dados, email e push).

A aplicação funciona como PWA completo com suporte a modo offline. O painel administrativo

permite gestão de usuários e auditoria detalhada do sistema. Por fim, o deploy automatizado

com CI/CD garante entregas rápidas e confiáveis.

6.6.6 Cobertura dos objetivos específicos

As histórias de usuário implementadas cobrem integralmente os cinco objetivos especí-

ficos estabelecidos no Capítulo 1:

• Objetivo 1 - Sistema de cadastro: Coberto por HU001 (cadastro de perfil detalhado

dos pets);

• Objetivo 2 - Lembretes e notificações: Coberto por HU003 (lembretes automáticos

de alimentação e medicação);

• Objetivo 3 - Controle alimentar: Coberto por HU002 (registro e monitoramento de

refeições com controle de porções);

• Objetivo 4 - Compartilhamento com permissões: Coberto por HU004, HU005,

HU006, HU007, HU008 e HU009 (sistema completo de compartilhamento com três

níveis de permissões);

• Objetivo 5 - Painel administrativo: Coberto por HU010, HU011 e HU012 (segurança,

gestão de usuários e auditoria).

Esta correspondência direta entre objetivos e histórias garante que o sistema desenvol-

vido atende plenamente aos propósitos estabelecidos para este trabalho.

6.6.7 Desafios superados

1. Arquitetura Monorepo: Decisão de manter frontend e backend em um único reposi-

tório simplificou versionamento atômico e testes integrados.

2. Deploy Automatizado: Configuração completa de CI/CD com GitHub Actions, in-

cluindo 32 commits de ajustes até alcançar estabilidade total.

60

3. PWA e Offline Mode: Implementação de Service Workers e cache inteligente permi-

tindo funcionamento offline.

4. Sistema de Lembretes Complexo: Jobs assíncronos com idempotência e suporte a

recorrência avançada (dias da semana, janelas de horário, timezone override).

5. Compartilhamento Flexível: Sistema dual de compartilhamento (pets individuais +

locations inteiras) com controle granular de permissões.

6.6.8 Lições aprendidas

O processo de desenvolvimento proporcionou aprendizados valiosos sobre engenharia

de software moderna. A adoção de metodologia ágil com entregas incrementais permitiu valida-

ção contínua das funcionalidades desenvolvidas. Os testes automatizados provaram ser essen-

ciais para realizar refatorações com segurança e confiança. A manutenção de documentação

técnica detalhada facilitou significativamente a manutenção e evolução do código ao longo do

projeto. Uma arquitetura bem planejada desde o início mostrou-se fundamental para facilitar a

adição de features avançadas sem necessidade de reescritas estruturais. Por fim, a implemen-

tação de CI/CD demonstrou reduzir significativamente tanto o tempo de deploy quanto erros

humanos durante o processo de publicação.

O projeto demonstrou com sucesso a aplicação de conceitos modernos de engenharia

de software, resultando em uma solução robusta, escalável e pronta para uso em produção.

61

7 CONCLUSÃO

O desenvolvimento do UTFPets representou uma jornada de aprendizado técnico, meto-

dológico e pessoal, resultando em uma aplicação web funcional voltada ao apoio de tutores no

controle de alimentação e cuidados de seus animais de estimação. A solução integra, em uma

única plataforma, recursos de cadastro de pets, registro de refeições, lembretes inteligentes e

colaboração entre múltiplos cuidadores.

Conforme detalhado no Capítulo 6, todas as histórias de usuário definidas na fase de

análise foram implementadas, cobrindo integralmente os objetivos específicos apresentados na

Introdução. O sistema oferece:

• gerenciamento completo de perfis de pets, incluindo informações nutricionais relevan-

tes;

• registro estruturado de refeições, permitindo acompanhar horários e quantidades;

• lembretes configuráveis para alimentação, medicação e outras rotinas;

• compartilhamento com controle granular de permissões entre tutores e cuidadores;

• um painel administrativo para gestão global de usuários, pets e auditoria.

Dessa forma, o UTFPets atende ao propósito central do trabalho: disponibilizar uma

ferramenta capaz de organizar e tornar mais seguro o cuidado diário com os animais.

Entre os principais desafios enfrentados destacam-se a modelagem de um sistema de

lembretes recorrentes com múltiplos fusos horários, a implementação do modo offline via PWA,

o desenho do modelo de compartilhamento com diferentes papéis de usuário e a configuração

do pipeline de deploy automatizado em nuvem. A superação desses pontos exigiu estudo apro-

fundado, experimentação e refatorações sucessivas, consolidando o amadurecimento do autor

em engenharia de software.

Como contribuições, o UTFPets oferece uma solução integrada que reúne funcionalida-

des até então dispersas em aplicativos distintos, com foco em colaboração entre cuidadores

e controle detalhado da rotina alimentar dos pets. Para além do produto em si, o projeto de-

monstra, de forma prática, a aplicação de conceitos modernos de desenvolvimento web, testes,

segurança, conteinerização e operação em nuvem.

O UTFPets encontra-se operacional em ambiente de produção e pronto para ser utili-

zado por tutores e cuidadores, cumprindo os objetivos propostos e abrindo espaço para novas

evoluções. A experiência de desenvolvimento consolidou conhecimentos adquiridos ao longo

do curso e reforçou a importância de boas práticas de projeto, testes e automação.

Com a base técnica estabelecida e os requisitos iniciais atendidos, o sistema está pre-

parado para incorporar melhorias mais avançadas, como recursos de inteligência artificial, in-

62

tegrações com dispositivos IoT e serviços de telemedicina veterinária, que são discutidos na

seção de Trabalhos futuros.

7.1 Trabalhos futuros

O UTFPets foi desenvolvido como um MVP, focado nas funcionalidades Must Have de-

finidas pelo método MoSCoW. As histórias de usuário prioritárias foram implementadas e aten-

dem aos objetivos específicos deste trabalho, mas há um conjunto de funcionalidades classifi-

cadas como Should Have, Could Have e Won’t Have que compõem um roadmap consistente

para a evolução da plataforma.

No grupo das funcionalidades importantes (Should Have), destacam-se:

• Conteúdo educativo: criação de uma área com materiais sobre nutrição e cuidados

gerais, curados por especialistas, para apoiar decisões dos tutores.

• Personalização avançada de lembretes: embora o sistema já ofereça diferentes re-

gras de recorrência e fusos horários, futuros aprimoramentos poderão incluir presets

por tipo de atividade, perfis de lembrete por pet e preferências globais de notificação.

• Gráficos de evolução do peso: utilização dos dados já armazenados no banco para

gerar visualizações que auxiliem na avaliação do estado corporal e na prevenção de

obesidade ou desnutrição.

Entre as funcionalidades desejáveis (Could Have), podem ser citadas:

• Histórico analítico: expansão das telas de refeições e atividades com filtros avança-

dos, relatórios por período e exportação de dados.

• Integração com calendários externos: sincronização de lembretes com o calendário

do dispositivo ou serviços como Google Calendar, centralizando compromissos do pet

na agenda do usuário.

• Sugestões automáticas de dieta: geração de recomendações de porções e tipos de

alimento considerando espécie, idade, porte e histórico registrado.

As funcionalidades de longo prazo (Won’t Have na versão atual) envolvem mudan-

ças mais profundas e uso intensivo de tecnologias emergentes. Entre elas, destacam-se:

• módulos de dietas personalizadas elaboradas por veterinários diretamente no aplica-

tivo;

• integração com serviços de telemedicina veterinária e prontuário eletrônico;

• sistemas de recomendação de produtos com apoio de inteligência artificial;

63

• integração com dispositivos IoT (comedouros inteligentes, coleiras com GPS, balanças

conectadas) para registro automático de dados.

Além das funcionalidades orientadas ao usuário, há espaço para melhorias técnicas

relevantes, como a migração gradual para uma arquitetura de microserviços, adoção de ca-

che distribuído e CDN global, fortalecimento de mecanismos de segurança (autenticação em

duas etapas, auditorias periódicas) e internacionalização da plataforma com suporte a múltiplos

idiomas, moedas e regulamentações (Lei Geral de Proteção de Dados (LGPD), General Data

Protection Regulation (Regulamento Geral de Proteção de Dados) (GDPR), entre outras).

Como próximos passos imediatos, recomenda-se a realização de testes beta com

tutores reais, a coleta sistemática de feedback e métricas de uso, e a priorização das funciona-

lidades futuras com base nas necessidades observadas. A partir dessa validação, o UTFPets

poderá evoluir de um MVP acadêmico para uma solução de mercado robusta, ampliando seu

impacto na saúde e bem-estar dos animais de estimação.

64

REFERÊNCIAS

ANDERSON, D. J. Kanban: Successful evolutionary change for your technology business.
Seattle, WA: Blue Hole Press, 2010.

Association for Pet Obesity Prevention. 2024 Pet Obesity Prevalence Survey. 2024.
https://www.petobesityprevention.org/2024-survey. Acessado em: 15 jan. 2025.

CHANDLER, M. Nutrition for weight management in cats and dogs. UK Vet: Companion
Animal, v. 27, n. 5, p. 234–242, 2022.

DRIESSEN, V. A successful Git branching model. 2010. https://nvie.com/posts/
a-successful-git-branching-model/. Accessed: 2023-08-01.

FASCETTI, A.; DELANEY, S. Applied Veterinary Clinical Nutrition. [S.l.]: Wiley-Blackwell,
2012.

FEWSTER, M.; GRAHAM, D. Experiences of Test Automation: Case Studies of Software
Test Automation. Boston: Addison-Wesley, 2012. ISBN 978-0321754068.

GAROUSI, V.; FELDERER, M.; MäNTYLä, M. V. The need for multivocal literature reviews
in software engineering: Complementing systematic literature reviews with grey literature.
Information and Software Technology, v. 94, p. 62–81, 2018. ISSN 0950-5849.

GERMAN, A. J. Updates on obesity management for dogs and cats. Veterinary Clinics of
North America: Small Animal Practice, v. 52, n. 5, p. 1053–1070, 2022.

Instituto Pet Brasil. Censo Pet: 149,6 milhões de animais de estimação no Brasil. 2022.
http://institutopetbrasil.com/. Acessado em: 15 jan. 2025.

JONES, M.; BRADLEY, J.; SAKIMURA, N. JSON Web Token (JWT). [S.l.], 2015. Internet
Engineering Task Force.

KOGAN, L. R.; HELLYER, P. W. Access to veterinary care in the us: A preliminary study of pet
owner experiences. Animals, v. 13, n. 2, p. 340, 2023.

LAFLAMME, D. P.; FLAMMER, S. A.; HANSEN, B. D. Obesity in dogs and cats: A metabolic and
endocrine disorder. Topics in Companion Animal Medicine, v. 23, n. 3, p. 126–131, 2008.

MERKEL, D. Docker: lightweight linux containers for consistent development and deployment.
Linux Journal, v. 2014, n. 239, p. 2, 2014.

MESZAROS, G. xUnit Test Patterns: Refactoring Test Code. Boston: Addison-Wesley
Professional, 2007. ISBN 978-0131495050.

RUSSELL, A.; FIRTMAN, M. Progressive Web Apps. Sebastopol, CA: O’Reilly Media, 2018.

SCHWABER, K.; SUTHERLAND, J. The Scrum Guide: The Definitive Guide to Scrum. 2017.
https://scrumguides.org/scrum-guide.html. Accessed: 2023-08-01.

https://www.petobesityprevention.org/2024-survey
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
http://institutopetbrasil.com/
https://scrumguides.org/scrum-guide.html

65

APÊNDICE A – Estruturas das Tabelas do Banco de Dados

66

Este apêndice apresenta o detalhamento completo do esquema relacional do banco

de dados do UTFPets, desenvolvido em PostgreSQL. As tabelas foram implementadas por

meio de migrations no framework Laravel, garantindo versionamento, integridade referencial e

reprodutibilidade do ambiente de dados.

A.1 Tabela Users (Usuários)

A tabela Users armazena as informações dos usuários e credenciais de acesso ao sis-

tema.

Figura 19 – Estrutura da tabela Users

Fonte: Autoria própria (2025).

Campos principais:

• id: identificador único (PK);

67

• name: nome completo do usuário;

• email: endereço de e-mail único;

• password: senha criptografada (bcrypt);

• timezone: fuso horário preferencial;

• is_admin: define se o usuário possui privilégios administrativos;

• created_at, updated_at: timestamps de auditoria.

A.2 Tabela Locations (Locais)

Representa os locais físicos onde os pets residem, podendo ser compartilhados entre

usuários.

68

Figura 20 – Estrutura da tabela Locations

Fonte: Autoria própria (2025).

Campos principais:

• id: identificador único (UUID, PK);

• user_id: referência ao proprietário (FK → users);

• name: nome do local (único por usuário);

• description: descrição opcional;

• timezone: fuso horário específico;

• deleted_at: campo de soft delete.

69

A.3 Tabela Pets

Contém os dados dos animais cadastrados pelos usuários, vinculando-os a um tutor e,

opcionalmente, a uma localização.

Figura 21 – Estrutura da tabela Pets

Fonte: Autoria própria (2025).

70

Campos principais:

• id: identificador único (PK);

• user_id: referência ao tutor (FK → users);

• location_id: referência ao local (FK → locations);

• name: nome do pet;

• species, breed: espécie e raça;

• birth_date, weight: dados biológicos;

• photo: URL da imagem no Cloudinary;

• notes: observações;

• deleted_at: soft delete.

A.4 Tabela Meals (Refeições)

Registra o histórico de refeições de cada pet, permitindo o controle de horários, tipos e

quantidades de alimento.

71

Figura 22 – Estrutura da tabela Meals

Fonte: Autoria própria (2025).

Campos principais:

• id: identificador único (PK);

• pet_id: referência ao pet (FK → pets);

• food_type: tipo de alimento;

• quantity: quantidade servida;

72

• unit: unidade de medida;

• scheduled_for, consumed_at: horários de agendamento e consumo;

• notes, deleted_at: observações e exclusão lógica.

A.5 Tabela Reminders (Lembretes)

Gerencia os lembretes configurados pelos usuários, com suporte a recorrência e notifi-

cações automáticas.

Figura 23 – Estrutura da tabela Reminders

Fonte: Autoria própria (2025).

73

Campos principais:

• id: identificador único (UUID, PK);

• pet_id: referência ao pet (FK → pets);

• title, description: título e descrição do lembrete;

• scheduled_at: data e hora agendadas;

• repeat_rule, status, channel: controle de recorrência e status;

• days_of_week, timezone_override: personalizações avançadas;

• active_window_start, active_window_end: janelas de horário válidas.

A.6 Tabelas de Compartilhamento

As tabelas SharedPets e SharedLocations permitem o compartilhamento colaborativo

de pets e locais entre diferentes usuários, com papéis e permissões distintas.

Figura 24 – Estrutura da tabela SharedPets

Fonte: Autoria própria (2025).

74

Figura 25 – Estrutura da tabela SharedLocations

Fonte: Autoria própria (2025).

Ambas incluem os campos:

• id: identificador único (UUID, PK);

• user_id: usuário convidado (FK → users);

• role: papel do usuário (owner, editor, viewer);

• invitation_status: status do convite (pending, accepted, revoked);

• invited_by: referência ao usuário que realizou o convite.

A.7 Tabela Notifications (Notificações)

Registra o histórico de notificações enviadas aos usuários via banco, e-mail ou push.

75

Figura 26 – Estrutura da tabela Notifications

Fonte: Autoria própria (2025).

Campos principais:

• id: identificador único (UUID, PK);

• user_id: destinatário (FK → users);

• title, body: conteúdo da notificação;

• data: informações adicionais (JSON);

• channel: canal de envio;

• status: estado da notificação (queued, sent, failed, read).

76

A.8 Tabela PushSubscriptions (Assinaturas Push)

Gerencia as assinaturas de notificações push vinculadas a cada usuário do PWA.

Figura 27 – Estrutura da tabela PushSubscriptions

Fonte: Autoria própria (2025).

Campos principais:

• id: identificador único (PK);

• user_id: referência ao usuário (FK → users);

• endpoint: URL do endpoint de notificação;

• public_key, auth_token: dados de autenticação criptográfica.

A.9 Tabela AuditLogs (Logs de Auditoria)

Mantém o histórico de ações executadas pelos usuários, garantindo rastreabilidade com-

pleta.

77

Figura 28 – Estrutura da tabela AuditLogs

Fonte: Autoria própria (2025).

Campos principais:

• id: identificador único (PK);

• user_id: autor da ação (FK → users);

78

• action: tipo da ação (created, updated, deleted, viewed);

• model_type, model_id: referência ao registro afetado;

• changes: objeto JSON com valores antigos e novos;

• ip_address, user_agent: dados de origem da requisição.

A.10 Resumo dos Relacionamentos

O modelo relacional do UTFPets implementa os seguintes relacionamentos principais:

• User 1 → * Pets;

• User 1 → * Locations;

• Pet 1 → * Meals e Reminders;

• Pet 1 → * SharedPets;

• Location 1 → * SharedLocations;

• User 1 → * Notifications e PushSubscriptions;

• Todas as entidades críticas são registradas em AuditLogs.

	Agradecimentos
	Dedicatória
	Resumo
	Abstract
	Lista de Figuras
	Listagem de Códigos Fonte
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivo geral
	1.2 Objetivos específicos
	1.3 Justificativa
	1.4 Estrutura do trabalho

	2 Trabalhos Relacionados
	2.1 Petzillas
	2.2 FuncionalPet
	2.3 PetDesk
	2.4 Pet Diet Designer
	2.5 Estudo comparativo

	3 Referencial Teórico
	3.1 Processo de desenvolvimento
	3.1.1 Scrum
	3.1.2 Kanban
	3.1.3 Testes Automatizados

	3.2 Ferramentas de desenvolvimento
	3.2.1 Git, GitFlow e GitHub
	3.2.2 Google Cloud Platform (GCP)
	3.2.3 Monorepo

	3.3 Tecnologias do lado cliente
	3.3.1 Angular
	3.3.2 Progressive Web App (PWA)
	3.3.3 Bibliotecas e Ferramentas Complementares

	3.4 Tecnologias do lado servidor
	3.4.1 Docker
	3.4.2 Laravel
	3.4.3 PostgreSQL
	3.4.4 Cloudinary
	3.4.5 JSON Web Token (JWT)
	3.4.6 Firebase Cloud Messaging (FCM)

	3.5 Considerações

	4 MATERIAIS E MÉTODOS
	4.1 Materiais
	4.2 Métodos
	4.2.1 Aplicação do Scrum e Kanban
	4.2.2 Planejamento e controle de tarefas
	4.2.3 Integração contínua e versionamento
	4.2.4 Ambientes e testes automatizados

	4.3 Considerações

	5 ANÁLISE E PROJETO DO SISTEMA
	5.1 Implementação do método MoSCoW
	5.2 Estrutura do aplicativo
	5.3 Papéis dos usuários e permissões
	5.3.1 Owner (Proprietário)
	5.3.2 Editor
	5.3.3 Viewer (Visualizador)
	5.3.4 Administrador do Sistema
	5.3.5 Matriz de permissões

	5.4 Histórias de Usuário prioritárias (Must Have)
	5.4.1 Histórias de Usuário - Owner (Proprietário)
	5.4.2 Histórias de Usuário - Editor (cuidador com edição)
	5.4.3 Histórias de Usuário - Viewer (cuidador com visualização)
	5.4.4 Histórias de Usuário - Administrador do Sistema

	5.5 Modelagem do Banco de Dados
	5.5.1 Visão Geral do Modelo Relacional
	5.5.2 Evolução da modelagem durante o desenvolvimento

	5.6 Protótipos das telas
	5.6.1 Telas de autenticação
	5.6.2 Dashboard (Página Inicial)
	5.6.3 Gerenciamento de pets
	5.6.4 Gerenciamento de locais
	5.6.5 Gerenciamento de refeições
	5.6.6 Sistema de lembretes
	5.6.7 Sistema de compartilhamento
	5.6.8 Sistema de notificações
	5.6.9 Painel administrativo
	5.6.10 Considerações sobre o design

	5.7 Considerações

	6 DESENVOLVIMENTO DO SISTEMA
	6.1 Arquitetura geral do sistema
	6.1.1 Camadas e organização do projeto
	6.1.2 Backend e persistência de dados
	6.1.3 Autenticação, notificações e mídia
	6.1.4 Infraestrutura e conteinerização
	6.1.5 Fluxo de requisições

	6.2 Fase inicial: estrutura base e prototipação
	6.2.1 Contexto e planejamento
	6.2.2 Atividades realizadas
	6.2.3 Resultados da fase inicial

	6.3 Fase principal: implementação das funcionalidades essenciais
	6.3.1 Contexto da retomada
	6.3.2 Narrativa do desenvolvimento
	6.3.3 Entregas e aprendizados

	6.4 Fase avançada: funcionalidades diferenciadas e PWA
	6.4.1 Contexto e motivação
	6.4.2 Narrativa do desenvolvimento
	6.4.3 Entregas e reflexões

	6.5 Fase final: deploy, produção e refinamentos
	6.5.1 Contexto da transição para produção
	6.5.2 Narrativa do desenvolvimento
	6.5.3 Entregas e lições do deploy

	6.6 Considerações Finais do Desenvolvimento
	6.6.1 Estatísticas finais
	6.6.2 Métricas quantitativas do sistema
	6.6.3 Arquitetura e código
	6.6.4 Tecnologias utilizadas
	6.6.5 Funcionalidades implementadas
	6.6.6 Cobertura dos objetivos específicos
	6.6.7 Desafios superados
	6.6.8 Lições aprendidas

	7 Conclusão
	7.1 Trabalhos futuros

	Referências
	A Estruturas das Tabelas do Banco de Dados
	A.1 Tabela Users (Usuários)
	A.2 Tabela Locations (Locais)
	A.3 Tabela Pets
	A.4 Tabela Meals (Refeições)
	A.5 Tabela Reminders (Lembretes)
	A.6 Tabelas de Compartilhamento
	A.7 Tabela Notifications (Notificações)
	A.8 Tabela PushSubscriptions (Assinaturas Push)
	A.9 Tabela AuditLogs (Logs de Auditoria)
	A.10 Resumo dos Relacionamentos

