UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA

RAFAEL SEDOR OLIVEIRA DEDA

UTFPETS: UMA APLICACAO WEB PARA GERENCIAMENTO DE REFEICOES
E CONTROLE NUTRICIONAL DE PETS

GUARAPUAVA
2025

RAFAEL SEDOR OLIVEIRA DEDA

UTFPETS: UMA APLICAGAO WEB PARA GERENCIAMENTO DE REFEICOES
E CONTROLE NUTRICIONAL DE PETS

UTFPets: A Web Application for Meal Management and Nutritional Control of
Pets

Trabalho de Conclusao de Curso de Graduacgao
apresentado como requisito para obtengédo do
titulo de Tecndlogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnolégica Federal do Parana.

Orientador: Prof. Dr. Roni Fabio Banaszewski

GUARAPUAVA
2025

Esta licenca permite compartilhamento, remixe, adaptagéo e criagdo a partir do traba-

|@ @ | Iho, mesmo para fins comerciais, desde que sejam atribuidos créditos ao(s) autor(es).

Conteudos elaborados por terceiros, citados e referenciados nesta obra ndo sao co-
4.0 Internacional bertos pela licenga.

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

RAFAEL SEDOR OLIVEIRA DEDA

UTFPETS: UMA APLICAGAO WEB PARA GERENCIAMENTO DE REFEICOES
E CONTROLE NUTRICIONAL DE PETS

Trabalho de Conclusao de Curso de Graduacgao
apresentado como requisito para obtengcao do
titulo de Tecndlogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnolégica Federal do Parana.

Data de aprovagao: 04/dezembro/2025

Prof. Roni Fabio Banaszewski
Doutorado
Universidade Tecnoldgica Federal do Parana — UTFPR

Prof. Luciano Ogiboski
Doutorado
Universidade Tecnoldgica Federal do Parana — UTFPR

Prof. William Alberto Cruz Castaneda
Doutorado
Universidade Tecnoldgica Federal do Parana — UTFPR

GUARAPUAVA
2025

AGRADECIMENTOS

Agradego a minha familia pelo apoio incondicional, incentivo constante e compreensao
nos momentos de auséncia, essenciais para a conclusao desta etapa académica.

A minha noiva, Beatriz Farias Alvaides, pela colaboracao técnica que ajudou a direci-
onar este projeto e pelo olhar profissional voltado a medicina veterinaria, que contribuiu para
alinhar o desenvolvimento da solucédo as necessidades reais de tutores e animais.

Ao meu orientador, Prof. Dr. Roni Fabio Banaszewski, pela dedicacao, confianca e pela
orientagcao fundamentada no rigor académico e tecnolégico, que incentivou o desenvolvimento
deste trabalho de forma critica, autbnoma e profissional.

Aos professores e servidores da Universidade Tecnoldgica Federal do Parana
(UTFPR), pelos conhecimentos compartilhados, pela formagao de qualidade e pela infraestru-
tura disponibilizada durante o curso.

Por fim, agradeco a todos que, direta ou indiretamente, contribuiram para este projeto,
seja pelo conhecimento compartilhado, pelas conversas produtivas ou pelo apoio moral, tor-
nando esta jornada mais leve e significativa.

Dedico este trabalho a minha noiva, Beatriz
Farias Alvaides, futura médica veterindria, que
acreditou nesta ideia antes mesmo de ela
existir por completo. Suas percep¢oes, seu
cuidado com os animais e sua visdo
profissional foram essenciais para transformar
um simples esbo¢co em algo que pudesse gerar
impacto real.

“Escutar com atengdo é como dar asas ao
pensamento de outra pessoa.”
C. S. Lewis

Que este projeto seja também parte do que
construimos juntos.

RESUMO

A alimentacao adequada de animais de estimagao é essencial para garantir salde e bem-estar,
especialmente em um contexto de crescimento do nimero de animais domésticos. Entretanto,
diversos tutores enfrentam dificuldades ao gerenciar uma dieta equilibrada, em raz&o de rotinas
agitadas e de lacunas no conhecimento técnico, o que pode acarretar problemas de saude
como obesidade e outras doencas cronicas. O presente trabalho descreve o desenvolvimento
de um aplicativo denominado UTFPets, que permite registrar dados sobre a salde e alimen-
tacdo dos animais, receber lembretes de atividades e compartilhar informagdes com outros
cuidadores ou estabelecimentos especializados. Entre 0s principais recursos, destacam-se
o cadastro de usuario e do perfil do animal, lembretes para atividades essenciais, controle
alimentar e secOes educativas sobre segurancga alimentar e nutricio. Além disso, a aplicacao
inclui o envio de notificagbes para garantir a entrega eficaz de lembretes e informagdes. Com
isso, ha a intencdo de que o UTFPets simplifique o controle nutricional e promova a saude
dos animais, oferecendo aos tutores mais conscientizacdo sobre os cuidados necessarios e

melhorando a qualidade de vida dos pets e a rotina dos cuidadores.

Palavras-chave: gestdo de pets; nutricdo animal; controle alimentar; aplicativo para pets; tec-

nologia em saude animal.

ABSTRACT

Proper nutrition for pets is essential to ensure their health and well-being, especially in the
context of an increasing number of domestic animals. However, many pet owners face chal-
lenges in managing a balanced diet due to busy routines and a lack of technical knowledge,
resulting in health issues such as obesity and other chronic diseases. This project aims to
develop an application called UTFPets. UTFPets will allow pet owners to record important
health and nutrition data about their pets, receive activity reminders, and share information with
other caregivers or establishments, such as pet hotels. Among its main features, the app will
include user registration, animal profiles, reminders for essential activities, dietary control, and
educational information about food safety and nutrition. The proposal also involves the use of
technologies like Firebase Cloud Messaging (FCM), enabling push notifications to ensure that
users receive relevant reminders and information conveniently. UTFPets is expected to simplify
nutritional management and promote pet health by providing users with greater control and
awareness of pet care, thereby improving the quality of life for pets and the daily routines of their

caregivers.

Keywords: pet management; animal nutrition; dietary control; pet app; health technology for

pets.

LISTA DE FIGURAS

Figura1 — Pagina inicial do site do aplicativo Petzillas 18
Figura2 — Pagina inicial do site do aplicativo FuncionalPet 19
Figura 3 — Pagina inicial do site do aplicativo PetDesk 19
Figura4 — Pagina inicial do site do aplicativo Pet Diet Designer 19
Figura 5 — Diagrama entidade-relacionamento do bancodedados 37
Figura6 — Telas de autenticaggodo UTFPets 40
Figura7 — Dashboarddo UTFPets 40
Figura 8 — Sistema de gerenciamentodepets 41
Figura9 — Sistema de gerenciamento de locations 41
Figura 10 — Pagina de gerenciamento de refeicées 42
Figura 11 — Sistema de gerenciamentode lembretes 42
Figura 12 — Sistema de gerenciamento de compartilhamentos 42
Figura 13 — Pagina de convitespendentes 43
Figura 14 — Sistema de notificacbesdo UTFPets 43
Figura15 — Comparacao entre perfisdeusuario 43
Figura 16 — Painel de gerenciamento de usuarios (Admin) 44
Figura 17 — Visualizagao de todos os pets (Admin) 44
Figura 18 — Painel de auditoria e logs do sistema (Admin) 44
Figura19 — EstruturadatabelaUsers 66
Figura 20 — Estrutura da tabela Locations 68
Figura21 — EstruturadatabelaPets 69
Figura22 — EstruturadatabelaMeals 71
Figura 23 — Estrutura da tabela Reminders 72
Figura 24 — Estrutura da tabela SharedPets 73
Figura 25 — Estrutura da tabela SharedLocations 74
Figura 26 — Estrutura da tabela Notifications 75
Figura 27 — Estrutura da tabela PushSubscriptions 76

Figura 28 — Estrutura da tabela AuditLogs 77

LISTAGEM DE CODIGOS FONTE

Listagem 1 — Requisicao HTTP para cadastro de pet . . .

Listagem 2 — Resposta HTTP de sucesso ao cadastrar pet

Listagem 3 — Estrutura do repositorio monorepodo UTFPets

Siglas

API
CDN
Cl/CD

CRUD
CSS
E2E
FCM
GCP
GDPR
HTML
HTTP
HTTPS

IAM
JSON
JWT
LGPD
MVC
MVP
ORM
PHP
PWA

LISTA DE ABREVIATURAS E SIGLAS

Application Programming Interface (Interface de Programacao de Aplicacdes)
Content Delivery Network (Rede de Distribuicao de Conteudo)

Continuous Integration/Continuous Deployment (Integragao Continua/Implanta-
¢ao Continua)

Create, Read, Update, Delete (Criar, Ler, Atualizar e Excluir)

Cascading Style Sheets (Folhas de Estilo em Cascata)

End-to-End (Extremo a Extremo)

Firebase Cloud Messaging (Mensageria em Nuvem do Firebase)

Google Cloud Platform (Plataforma de Nuvem do Google)

General Data Protection Regulation (Regulamento Geral de Prote¢ao de Dados)
HyperText Markup Language (Linguagem de Marcagéo de Hipertexto)
Hypertext Transfer Protocol (Protocolo de Transferéncia de Hipertexto)
Hypertext Transfer Protocol Secure (Protocolo de Transferéncia de Hipertexto Se-
guro)

Identity and Access Management (Gerenciamento de Identidade e Acesso)
JavaScript Object Notation (Notacdo de Objetos JavaScript)

JSON Web Token (Token Web JSON)

Lei Geral de Protegcao de Dados

Model-View-Controller (Modelo-Visao-Controlador)

Minimum Viable Product (Produto Minimo Viavel)

Object-Relational Mapping (Mapeamento Objeto-Relacional)

PHP: Hypertext Preprocessor (Pré-processador de Hipertexto PHP)

Progressive Web App (Aplicativo Web Progressivo)

RBAC
REST
SPA
SQL
SSL

ul
URL
6)
VM
WCAG

Role-Based Access Control (Controle de Acesso Baseado em Funcoes)
Representational State Transfer (Transferéncia de Estado Representacional)
Single Page Application (Aplicagdo de Pagina Unica)

Structured Query Language (Linguagem de Consulta Estruturada)

Secure Sockets Layer (Camada de Soquetes Seguros)

User Interface (Interface do Usuario)

Uniform Resource Locator (Localizador Uniforme de Recursos)

User Experience (Experiéncia do Usuario)

Virtual Machine (Maquina Virtual)

Web Content Accessibility Guidelines (Diretrizes de Acessibilidade para Con-

tetdo Web)

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5

3.1

3.1.1
3.1.2
3.1.3
3.2

3.2.1
3.2.2
3.2.3
3.3

3.3.1
3.3.2
3.3.3
3.4

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

SUMARIO

INTRODUCAOD ittt i e e e e e e e e e e e e e e e e 14
Objetivogeral @ i i e e e e 14
Objetivos especificos e 15
Justificativa e 15
Estruturadotrabalho 0. 16
TRABALHOS RELACIONADOS it it e e 18
Petzillas e 18
FuncionalPet 18
PetDesk @ i i i i e e e e e 19
Pet DietDesigner« i i i i i i i e e 19
Estudocomparativoo 20
REFERENCIALTEORICO. i ittt it et et 21
Processo dedesenvolvimento 21
SCrum . . 21
Kanban e 21
Testes Automatizadoso 22
Ferramentas de desenvolvimento 22
Git, GitFlowe GitHub 22
Google Cloud Platform (GCP) 23
Monorepo 23
Tecnologias do ladocliente 24
Angular . . . L 24
Progressive Web App (PWA) Lo 24
Bibliotecas e Ferramentas Complementares 25
Tecnologias do lado servidor 25
Docker 25
Laravel e 25
PostgreSQL e 26
Cloudinary e 26

JSON Web Token (JWT) o o 26

3.4.6
3.5

4.1
4.2
4.2.1
422
4.2.3
424
4.3

5.1

5.2

5.3

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4

5.41
5.4.2
5.4.3
5.4.4
5.5

5.5.1
5.5.2
5.6

5.6.1
5.6.2
5.6.3
5.6.4

Firebase Cloud Messaging (FCM) 27

Consideragtes v it i e e e e e e e e e e e 27
MATERIAISEMETODOSttt ittt i et et e eee e e 28
Materiais o e e e e e e 28
Métodos i e e e e e e e 29
Aplicagdodo ScrumeKanban oL 29
Planejamento e controle detarefas 29
Integracdo continua e versionamento 29
Ambientes e testes automatizadoso oL 30
Consideragoes v it i e e e e e e e e e e e 30
ANALISEEPROJETODOSISTEMA ot ittt e e e e 31
Implementacao do métodoMoSCoW 31
Estruturadoaplicativo, 31
Papéis dos usuarios e permissoes i v e e e e e e .. 32
Owner (Proprietario)o 32
Editor e 32
Viewer (Visualizador) 33
Administradordo Sistemao 33
Matriz de permissées 34
Historias de Usuario prioritarias (MustHave) 34
Histérias de Usuario - Owner (Proprietario) 35
Histérias de Usuario - Editor (cuidador comedi¢do) 35
Histérias de Usuério - Viewer (cuidador com visualizagéo) 35
Histérias de Usuério - Administrador do Sistema 36
Modelagemdo BancodeDados 36
Visdo Geral do Modelo Relacional 36
Evolucao da modelagem durante o desenvolvimento 38
Protétiposdastelas 39
Telasde autenticacdo 39
Dashboard (Pagina Inicial) 40
Gerenciamentode pets e 4
Gerenciamentodelocais 41

5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.6.10
5.7

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2

6.2.1
6.2.2
6.2.3
6.3

6.3.1
6.3.2
6.3.3
6.4

6.4.1
6.4.2
6.4.3
6.5

6.5.1
6.5.2
6.5.3
6.6

6.6.1

Gerenciamentoderefeicbeso 41

Sistemadelembretes L 42
Sistema de compartilhamentoo o Lo 42
Sistema de notificagbes Lo 43
Painel administrativo o 43
Consideragbes sobreodesign oo 44
Consideragies v v i i i e e e e e e e e e e e e e 45
DESENVOLVIMENTODO SISTEMA 46
Arquiteturageraldosistema, 46
Camadas e organizagdodoprojeto 46
Backend e persisténciadedados 46
Autenticacao, notificagbesemidia 47
Infraestrutura e conteinerizagdo 47
Fluxoderequisicdes e 47
Fase inicial: estrutura base e prototipacédo 48
Contexto e planejamento oo 48
Atividadesrealizadas 48
Resultados da fase inicial 48
Fase principal: implementacao das funcionalidades essenciais 49
Contextodaretomada 49
Narrativa do desenvolvimento 49
Entregas e aprendizados e 51
Fase avancada: funcionalidades diferenciadase PWA 52
Contextoemotivagdo 52
Narrativa do desenvolvimento 52
Entregasereflexdes 53
Fase final: deploy, producéao e refinamentos 53
Contexto da transigdo paraprodugdo 53
Narrativa do desenvolvimento 54
Entregas e ligdesdodeploy, 56
Consideracoes Finais do Desenvolvimento 56

Estatisticas finais 56

6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8

7.1

Métricas quantitativas do sistema 56

Arquiteturae cOdigo L 58
Tecnologias utilizadas Lo 58
Funcionalidades implementadas 58
Cobertura dos objetivos especificos 59
Desafios superados e 59
Licbesaprendidas 60
CONCLUSAOD ittt e e e e e e e e e e 61
Trabalhosfuturos i e 62
REFERENCIAS ettt e e e 64

APENDICE A ESTRUTURAS DAS TABELAS DO BANCO DE DADOS . 66

A1 TabelaUsers (Usuarios) ¢ o i i i v it it v v e 66
A.2 Tabela Locations (Locais) v v v it w . 67
A3 TabelaPets i i 69
A.4 Tabela Meals (Refeicées), 70
A.5 Tabela Reminders (Lembretes) 72
A.6 Tabelas de Compartilhamento 73
A.7 Tabela Notifications (Notificagées) 74
A.8 Tabela PushSubscriptions (Assinaturas Push) 76
A.9 Tabela AuditLogs (Logs de Auditoria) 76

A.10Resumo dos Relacionamentos+ v ... 78

14

1 INTRODUCAO

A alimentacdo adequada é essencial para a saude e o bem-estar de animais de estima-
cao, especialmente em um momento em que cada vez mais pessoas estdo acolhendo pets em
suas casas e os tratando como parte da familia. Uma nutricdo balanceada nao apenas previne
doencas crbnicas, como obesidade e diabetes, mas também contribui para que os animais te-
nham uma vida mais longa e saudavel (FASCETTI; DELANEY, 2012). Entretanto, a obesidade
€ uma das condigdes nutricionais mais comuns entre caes e gatos, resultando em complica¢des
que podem incluir problemas metabdélicos e aumento nos custos com cuidados veterinarios (LA-
FLAMME; FLAMMER; HANSEN, 2008; GERMAN, 2022).

Estudos recentes reforgam a relevancia do controle alimentar de animais de estimagéo.
A obesidade figura entre as principais doengas nutricionais em caes e gatos, frequentemente as-
sociada a dietas inadequadas e a falta de rotina nos cuidados diarios (GERMAN, 2022; CHAN-
DLER, 2022). De acordo com a Association for Pet Obesity Prevention, aproximadamente 59%
dos caes e 61% dos gatos nos Estados Unidos e Europa apresentam excesso de peso, eviden-
ciando um problema de saude recorrente (Association for Pet Obesity Prevention, 2024). Além
disso, a auséncia de comunicagao entre multiplos cuidadores e o registro desorganizado de in-
formagbes podem agravar esses quadros, reduzindo a qualidade de vida dos animais (KOGAN;
HELLYER, 2023). Nesse contexto, solugdes tecnolégicas despontam como instrumentos valio-
S0s para organizar e monitorar rotinas de alimentacdo e medicacao, promovendo praticas mais
consistentes de cuidado e bem-estar animal.

Apesar da crescente conscientizagdo sobre a importancia da nutrigdo animal, muitos
tutores enfrentam dificuldades praticas no manejo diario. A rotina corrida, somada a falta de
comunicagao entre multiplos cuidadores em um mesmo lar, pode resultar em alimentagéo des-
controlada, duplicagao de porgdes ou esquecimento de medicagdes (KOGAN; HELLYER, 2023).
Essas falhas comprometem a salde dos pets e evidenciam a necessidade de ferramentas que
auxiliem na organizacéo e coordenacéao dos cuidados.

Nesse contexto, a tecnologia apresenta-se como aliada para centralizar informacgdes,
automatizar lembretes e facilitar o compartilhamento de responsabilidades. A proposta deste
trabalho é desenvolver uma aplicacdo web progressiva que permita registrar dados de saude
dos animais, gerenciar rotinas alimentares, receber notificagdes automaticas e compartilhar in-
formagdes com cuidadores autorizados, contribuindo para uma gestao mais eficiente e colabo-
rativa dos cuidados com pets.

1.1 Objetivo geral

Desenvolver uma aplicagdo web e progressiva Progressive Web App (Aplicativo Web
Progressivo) (PWA) que centralize e facilite a gestdo dos cuidados e informagdes de animais de
estimagao.

15

1.2 Objetivos especificos

Para alcancar o objetivo geral, foram estabelecidos os seguintes objetivos especificos:

Implementar um sistema de cadastro de usudario e perfil dos pets, permitindo o registro
de informacgbes detalhadas de cada animal e a criagcdo de uma base personalizada
para acompanhamento de salde e bem-estar;

» Desenvolver funcionalidades de lembretes e notificacdes, de modo a auxiliar os tutores
na manuteng¢édo de um plano de cuidado consistente, incluindo horarios de alimentacao,

medicacao e consultas;

 Criar um médulo de controle alimentar, no qual seja possivel monitorar a dieta dos pets,
controlar porgcdes e frequéncia de refeicdes, promovendo uma nutricdo equilibrada e
individualizada;

» Implementar uma funcionalidade de compartilhamento de informagdes com controle
granular de permissodes, viabilizando a colaboragéo entre diferentes cuidadores e ga-
rantindo que mudltiplos responsaveis possam seguir a mesma rotina alimentar e de
cuidado;

» Desenvolver um painel administrativo para gestao do sistema, incluindo controle de
usuarios, auditoria de acoes e monitoramento de operagdes criticas.

1.3 Justificativa

O crescimento da populagéo de animais de estimag¢do no Brasil e no mundo tem sido
exponencial nas ultimas décadas. Segundo o Instituto Pet Brasil (Instituto Pet Brasil, 2022), o
pais possui cerca de 149,6 milhdes de animais de estimacao, sendo o terceiro maior mercado
pet do mundo.

Esse aumento reflete mudangas sociais importantes, nas quais 0s pets deixaram de ser
vistos apenas como animais de companhia para se tornarem membros efetivos das familias.

Contudo, o crescimento na populacao de pets nao foi acompanhado, na mesma propor-
¢ao, pelo conhecimento técnico necessério para oferecer cuidados adequados, especialmente
no que diz respeito a nutrigdo. Estudos como os de German (2022) e Laflamme, Flammer e Han-
sen (2008) demonstram que a obesidade é uma das condi¢des nutricionais mais prevalentes em
caes e gatos, estando diretamente relacionada a problemas metabdlicos, cardiovasculares e or-
topédicos.

A falta de controle sobre as porgées, a frequéncia inadequada de alimentacao e o des-
conhecimento sobre as necessidades nutricionais especificas de cada animal contribuem signi-

ficativamente para esse cenario.

16

A rotina cada vez mais agitada dos tutores dificulta 0 acompanhamento sistematico da
alimentagcdo e medicacao de seus pets. Muitas vezes, a auséncia de um registro organizado
leva ao esquecimento de horarios importantes e até mesmo a duplicagao de refeicées quando
mais de uma pessoa cuida do mesmo animal.

Essa falta de coordenagao pode resultar em consequéncias graves para a saude do pet,
comprometendo seu bem-estar e qualidade de vida.

Além disso, a colaboracdo entre multiplos cuidadores representa um desafio adicional.
Em muitos lares, diferentes membros da familia ou até mesmo profissionais, como dog wal-
kers e pet sitters, compartilham a responsabilidade pelos cuidados dos animais. A auséncia
de uma plataforma centralizada para registro e compartilhamento de informagcdes pode levar a
inconsisténcias na rotina do pet, comprometendo seu bem-estar.

Diante desse contexto, a tecnologia surge como uma aliada importante. Aplicativos mo-
veis e sistemas web tém se mostrado eficazes na organizagao de rotinas, no registro de informa-
cbes e na promocao de boas praticas em diversas areas da saude (KOGAN; HELLYER, 2023).
No entanto, conforme evidenciado na revisao de trabalhos relacionados, as solugbes existentes
no mercado geralmente focam em aspectos isolados do cuidado pet, como controle de vacinas
ou planejamento nutricional, sem oferecer uma abordagem integrada e colaborativa.

O UTFPets justifica-se, portanto, pela necessidade de preencher essa lacuna, ofere-
cendo uma plataforma que integre o gerenciamento alimentar, lembretes automatizados e a
possibilidade de compartilhamento de informagdes entre cuidadores com controle granular de
permissdes. Ao centralizar essas funcionalidades em um Unico aplicativo, espera-se facilitar a
rotina dos tutores, reduzir erros no manejo dos pets e, consequentemente, promover uma ges-
tao mais eficiente dos cuidados diérios.

Além dos beneficios diretos para os tutores e seus pets, o UTFPets também tem relevan-
cia académica e profissional. O projeto aplica conceitos modernos de engenharia de software,
metodologias ageis, arquitetura de sistemas web e boas praticas de desenvolvimento, contri-
buindo para a formagéo técnica do desenvolvedor e oferecendo um exemplo pratico de como a
tecnologia pode resolver problemas reais e complexos da sociedade contemporanea.

Por fim, a justificativa do UTFPets reside na busca por promover o bem-estar animal
através da tecnologia, capacitando os tutores com ferramentas que facilitem a tomada de deci-
sbes informadas sobre a salde e nutricdo de seus pets, e estabelecendo uma base sélida para
futuras expansdes que possam incluir inteligéncia artificial, telemedicina veterinaria e integracéo
com dispositivos inteligentes.

1.4 Estrutura do trabalho

Este trabalho esta organizado em sete capitulos:

17

No Capitulo 1, é apresentada a introducdo do projeto, destacando a motivacao, os
objetivos e a justificativa para o desenvolvimento do UTFPets, bem como a estrutura
deste trabalho.

No Capitulo 2, sdo analisados sistemas similares existentes, realizando-se uma com-

paracao entre as solugdes disponiveis, suas funcionalidades, vantagens e limitagdes.

No Capitulo 3, é apresentado o referencial teérico que sustenta o projeto, abordando
metodologias ageis de desenvolvimento de software (Scrum, Kanban), testes automa-
tizados, ferramentas de controle de versao e as tecnologias utilizadas no desenvolvi-

mento de aplicagbes web modernas.

No Capitulo 4, sdo descritos os materiais e métodos empregados, incluindo as ferra-
mentas, tecnologias e o processo metodolégico utilizado no desenvolvimento do apli-
cativo.

No Capitulo 5, sdo apresentados os artefatos de analise e projeto do sistema, tais como
funcionalidades prioritarias, prototipacao de telas e modelagem do banco de dados.

No Capitulo 6, sdo apresentados os resultados do desenvolvimento do sistema.

Por fim, no Capitulo 7, apresenta-se a conclusao do trabalho, juntamente com suges-
toes para evolugdes futuras.

18

2 TRABALHOS RELACIONADOS

Este capitulo apresenta alguns aplicativos existentes no mercado que oferecem funcio-
nalidades para o gerenciamento da saude e da alimentacdo de animais de estimacao. O objetivo
€ avaliar em que medida tais solugdes atendem as demandas de tutores e como o aplicativo
proposto (UTFPets) se diferencia em termos de recursos e abrangéncia.

Nos ultimos anos, surgiram diversas solugdes tecnoldgicas para auxiliar no controle de
vacinas, agendamento de consultas, planejamento nutricional e outras praticas relacionadas
ao bem-estar dos pets. Entre elas, destacam-se Petzillas, FuncionalPet, PetDesk e Pet Diet
Designer, descritos a seguir.

2.1 Petzillas

O Petzillas, ilustrado na Figura 1, é um aplicativo gratuito disponivel para Android e iOS,
focado em fornecer aos tutores recursos para acompanhamento de vacinas, medicamentos,
vermifugos, antipulgas, consultas veterindrias, controle de peso e higiene. Um de seus pontos
fortes é a possibilidade de compartilhar dados com outros cuidadores, facilitando a colaboragéo
em lares com multiplas pessoas responsaveis pelo mesmo animal.

Petzillas g Qo

Petzilas
O app feito para
vocé cuidar A
ainda melhor
dos seus pets!

Figura 1 — Pagina inicial do site do ablicativo Petzillas

2.2 FuncionalPet

O FuncionalPet, apresentado na Figura 2, é um software voltado principalmente para
clinicas veterinarias, com énfase na elaboragao de dietas personalizadas para caes e gatos.
Profissionais podem usar a ferramenta para gerar planos nutricionais e acompanhar a evolu-
cao do animal. Por outro lado, a versao atual nao oferece recursos de lembretes didrios ou de
compartilhamento de tarefas entre diversos cuidadores.

19

nga
lataforma ionari ra p
5. dietas e i

Funcional Pet Online

Figura 2 — Pagina inicial do site do aplicativo FuncionalPet

2.3 PetDesk

O PetDesk, ilustrado na Figura 3, destaca-se por auxiliar no gerenciamento de com-
promissos dos animais, como consultas veterinarias, lembretes de medicacido e controle de
vacinas. E uma ferramenta Gtil para quem necessita de mais organizagdo no acompanhamento
da salde do pet. Entretanto, ndo contempla um modulo nutricional ou o controle de porgoes
diarias, limitando-se ao gerenciamento de eventos de salde.

@, PetDesk

Figura 3 — Pagina inicial do site do aplicativo PetDesk

2.4 Pet Diet Designer

O Pet Diet Designer, ilustrado na Figura 4, € focado na alimentacao de pets, com plane-
jamento de dietas, por¢des e monitoramento do consumo de dgua. Embora ofereca informagdes
nutricionais e dicas para manter a saude dos animais, nao prevé o registro de cuidados médicos
ou colaboracéao entre diferentes cuidadores.

& petdietvesigner

BALANCE RECIPES FOR ANY CANINE.

LIFE STAGE

Figura 4 — Pagina inicial do site do aplicativo Pet Diet Designer

2.5 Estudo comparativo

20

O Quadro 1 apresenta uma comparagao entre os aplicativos analisados e o UTFPets.

Quadro 1 — Comparacéao de funcionalidades entre aplicativos de gerenciamento pet

Funcionalidade Petzillas FuncionalPet PetDesk Pet Diet Designer | UTFPets
Gerenciamento de Perfil Sim Sim Sim Sim Sim
Controle Alimentar Parcial - - Sim Sim
Lembretes e Notificacbes Sim - Sim Parcial Sim
Planejamento Nutricional - Sim - Sim Parcial
Compartilhamento Cola- Sim - - - Completo
borativo

Histérico de Saude Sim Sim Sim - Sim
Conteldo Educativo Parcial - Parcial Sim Parcial
Multiplataforma iOS/Android Web iOS/Android iOS/Android Web/PWA
Funcionalidade Offline - - Sim

Fonte: Autoria prépria (2025).

Com base na analise comparativa, 0 UTFPets apresenta os seguintes diferenciais em

relagcdo as solugdes existentes:

. Compartilhamento Colaborativo Avancado: Enquanto o Petzillas oferece comparti-
lhamento basico, o UTFPets implementa um sistema de compartilhamento com trés
niveis de permissdes (owner, editor, viewer), permitindo controle granular sobre quem
pode visualizar, editar ou gerenciar as informagdes dos pets. Além disso, suporta com-
partilhamento de locations inteiras, compartilhando automaticamente todos os pets vin-
culados.

. Progressive Web App (PWA): O UTFPets é o Unico entre os analisados que funciona
como PWA, permitindo instalacdo em dispositivos sem necessidade de app stores,
funcionamento offline e notificacées push mesmo com o aplicativo fechado.

. Sistema de Lembretes Inteligentes: Lembretes com recorréncia avangada, incluindo
dias da semana especificos, janelas de horario e suporte a mdltiplos timezones.

. Hierarquia Espacial: Organizacdo de pets por locations (casas, apartamentos), com
suporte a timezone por local, facilitando o gerenciamento de pets em diferentes locali-
zacgdes.

. Notificacoes Multicanal: Sistema completo de notificagdes via banco de dados, e-mail
e push notifications, com histérico e controle de leitura.

. Painel Administrativo: Sistema de auditoria e gerenciamento para administradores,
permitindo supervisao e controle do sistema.

. Open Source e Extensivel: Codigo aberto que permite futuras integracdes e exten-
soes, incluindo potencial para inteligéncia artificial e telemedicina veterinaria.

21

3 REFERENCIAL TEORICO

O presente capitulo apresenta os principais fundamentos e tecnologias que embasam o
desenvolvimento de aplicagdes web modernas, com foco em metodologias ageis, arquitetura de
software, ferramentas de controle de versao e servigos em nuvem utilizados no desenvolvimento
do projeto.

3.1 Processo de desenvolvimento

O desenvolvimento de sistemas de software modernos demanda metodologias que per-
mitam flexibilidade, adaptacao rapida a mudancas e entrega continua de valor. Nesse contexto,
as metodologias ageis tém se destacado como abordagens eficazes para conduzir projetos de
software de forma iterativa e incremental (SCHWABER; SUTHERLAND, 2017).

3.1.1 Scrum

O Scrum é um framework agil amplamente utilizado para o gerenciamento de projetos
de desenvolvimento de software. Segundo Schwaber e Sutherland (2017), o Scrum organiza
o trabalho em ciclos curtos chamados sprints, que geralmente duram de uma a quatro sema-
nas. Cada sprint tem como objetivo entregar um incremento funcional do produto, permitindo
feedback rapido e ajustes continuos.

O Scrum define trés papéis principais: o Product Owner, responsavel por priorizar o
backlog do produto e definir os requisitos; o Scrum Master, que facilita o processo e remove
impedimentos; e o Time de Desenvolvimento, que implementa as funcionalidades.

Entre os artefatos do Scrum, destacam-se o Product Backlog, que contém todas as fun-
cionalidades desejadas priorizadas; o Sprint Backlog, que lista as tarefas selecionadas para a
sprint atual; e o Incremento, que é a versao funcional do produto ao final de cada sprint. Além
disso, o Scrum prevé cerimbnias como o planejamento da sprint, reunides diarias (daily stan-
dups), revisao da sprint e retrospectiva, que promovem transparéncia, inspecao e adaptacéao
continuas.

3.1.2 Kanban

O Kanban é outro método agil que complementa o Scrum ao fornecer uma visualizagao
clara do fluxo de trabalho. Segundo Anderson (2010), o Kanban utiliza um quadro visual dividido
em colunas que representam os estagios do processo de desenvolvimento, como “A Fazer”, “Em
Progresso”, “Em Teste” e “Concluido”. Cada tarefa é representada por um cartdo que se move
pelas colunas conforme avanga no processo.

22

Uma das principais vantagens do Kanban é a identificacdo de gargalos no fluxo de tra-
balho. Ao limitar o numero de tarefas em progresso simultaneamente (Work in Progress - WIP),
a equipe consegue focar em concluir tarefas antes de iniciar novas, aumentando a eficiéncia e
reduzindo o tempo de ciclo.

3.1.3 Testes Automatizados

Os testes automatizados consistem na utilizagdo de ferramentas e frameworks que exe-
cutam automaticamente rotinas de verificacdo sobre o cédigo-fonte, comparando o resultado
obtido com o resultado esperado (MESZARQOS, 2007). Essa abordagem contribui para o princi-
pio de integragdo continua, uma pratica amplamente difundida em metodologias ageis, na qual
0 codigo é constantemente validado a cada atualizagdo do repositorio.

De acordo com Fewster e Graham (2012), os testes automatizados podem ser classifi-
cados em diferentes niveis de granularidade. Os testes unitarios validam o comportamento de
fungdes, classes ou componentes isolados, garantindo que pequenas partes do sistema funcio-
nem corretamente. Ja os testes de integracdo verificam a comunicacéo entre médulos distintos,
enquanto os testes de sistema analisam o comportamento do software como um todo. Em um
nivel mais amplo, os testes de aceitacdo avaliam se o sistema atende aos requisitos definidos
pelo cliente ou usuario final.

Além disso, o uso de testes end-to-end (E2E) tem se tornado cada vez mais comum em
aplicagbes web modernas. Esses testes simulam o comportamento do usuario final, interagindo
com a interface grafica e percorrendo fluxos reais do sistema, o que permite avaliar a experiéncia
de uso e identificar falhas que poderiam passar despercebidas em testes isolados (GAROUSI;
FELDERER; MaNTYL4, 2018).

3.2 Ferramentas de desenvolvimento

O desenvolvimento de aplicagdes web modernas demanda o uso de um conjunto inte-
grado de ferramentas que auxiliam na gestao do projeto, no controle de versao, na colaboracao
entre desenvolvedores e na implantagdo continua das solugées em ambiente de producgao.

3.2.1 Git, GitFlow e GitHub

O Git é um sistema de controle de versao distribuido amplamente utilizado no desenvol-
vimento de software. Ele permite que desenvolvedores gerenciem mudancas no cédigo-fonte de
forma eficiente, criando ramificagoes (branches) para desenvolver funcionalidades isoladamente
e mesclando (merge) essas mudangas de volta ao codigo principal quando estao prontas.

23

O GitFlow é uma estratégia de branching que define um fluxo de trabalho estruturado
para projetos Git. Segundo Driessen (2010), o GitFlow organiza o desenvolvimento em bran-
ches principais (main e develop) e branches auxiliares para funcionalidades (feature),
correcoes (hot fix) e releases.

O GitHub, por sua vez, € uma plataforma de hospedagem de repositérios Git que oferece
recursos adicionais como pull requests, issues, actions (CI/CD) e colaboragdo em equipe.

3.2.2 Google Cloud Platform (GCP)

A Google Cloud Platform é uma plataforma de computagdo em nuvem que oferece ser-
vigos de infraestrutura, armazenamento e banco de dados com alta disponibilidade e escalabi-
lidade. A plataforma oferece monitoramento integrado, logs centralizados e escalabilidade sob
demanda, facilitando a manutencéo e operacao da aplicacdo em producéo.

3.2.3 Monorepo

Monorepo é uma estratégia de organizacao de codigo onde multiplos projetos relacio-
nados sao mantidos em um Unico repositério de versionamento. Diferentemente da abordagem
tradicional de mdltiplos repositérios (multirepo), onde cada componente ou servigco possui seu
proprio repositorio, 0 Monorepo centraliza todo o cédigo-fonte em uma estrutura unificada.

As principais vantagens do Monorepo incluem:

» Versionamento atomico: Mudancas que afetam multiplos componentes podem ser
commitadas de forma atémica, garantindo consisténcia entre frontend, backend e ou-
tras partes do sistema;

» Refatoracao simplificada: Alteracbes que afetam multiplos projetos podem ser reali-

zadas em um Unico commit, facilitando a manutengao e evolucao do cédigo;

« Compartilhamento de cédigo: Bibliotecas, tipos, interfaces e utilitarios podem ser
facilmente compartilhados entre diferentes partes do projeto;

» Testes integrados: Facilita a execucéo de testes end-to-end e de integracédo que en-

volvem multiplos componentes do sistema;

» Configuracao centralizada: Scripts de build, deploy, Continuous Integration/Continu-
ous Deployment (Integracdo Continua/Implantacdo Continua) (CI/CD) e configuracoes
de ambiente podem ser mantidos em um Gnico local.

No contexto do UTFPets, a arquitetura Monorepo consolidou o backend Laravel, frontend
Angular, testes E2E, configuragdes nginx e scripts de automagéo em uma estrutura organizada.

24

Essa decisdo baseou-se na necessidade de manter consisténcia entre as interfaces e Applica-
tion Programming Interface (Interface de Programacao de Aplicacdes) (APl)s, além de simplificar
o processo de CI/CD e facilitar o desenvolvimento local através do Docker Compose.

3.3 Tecnologias do lado cliente

3.3.1 Angular

O Angular é um framework desenvolvido pelo Google para a construcdo de aplicagdes
web dinamicas e Single Page Applications (Single Page Application (Aplicacdo de Pagina Unica)
(SPA)s). Ele utiliza TypeScript, uma linguagem que adiciona tipagem estatica ao JavaScript,
aumentando a seguranga e facilitando a manutenc¢ao do cédigo.

O Angular adota uma arquitetura baseada em componentes, onde cada componente
encapsula sua logica, template HyperText Markup Language (Linguagem de Marcacao de Hi-
pertexto) (HTML) e estilos Cascading Style Sheets (Folhas de Estilo em Cascata) (CSS). Essa
modularidade facilita a reutilizagéo de codigo e a organizagéo do projeto. Além disso, o Angular
oferece recursos poderosos como injecao de dependéncias, roteamento, formularios reativos,
gerenciamento de estado e comunicacao com APls através do médulo Hypertext Transfer Pro-
tocol (Protocolo de Transferéncia de Hipertexto) (HTTP) Client.

3.3.2 Progressive Web App (PWA)

Progressive Web App (PWA) é uma abordagem de desenvolvimento que combina o
melhor das aplicagbes web e nativas, oferecendo experiéncias de usuario ricas e confiaveis
mesmo em condi¢des de conectividade limitada (RUSSELL; FIRTMAN, 2018). Os PWAs utili-
zam tecnologias como Service Workers, Web App Manifest e Hypertext Transfer Protocol Se-
cure (Protocolo de Transferéncia de Hipertexto Seguro) (HTTPS) para habilitar funcionalidades
como instalagdo na tela inicial, notificagdes push e funcionamento offline.

Os Service Workers sdo scripts que rodam em background, interceptando requisicdes
de rede e permitindo o cache de recursos. Isso possibilita que o aplicativo carregue rapida-
mente e funcione mesmo quando o dispositivo esta offline. O Web App Manifest é um arquivo
JavaScript Object Notation (Notacao de Objetos JavaScript) (JSON) que define metadados da
aplicacao, como nome, icones, cores e orientacao, permitindo que o PWA seja instalado como
um aplicativo nativo.

25

3.3.3 Bibliotecas e Ferramentas Complementares

Além do Angular e PWA, o frontend do UTFPets utilizou diversas bibliotecas comple-
mentares:

* RxJS 7.8: Biblioteca para programagao reativa, permitindo o gerenciamento eficiente
de eventos assincronos e streams de dados através de Observables;

» TailwindCSS 3.4: Framework CSS utilitario que facilita a criacao de interfaces res-
ponsivas e modernas através de classes utilitarias, reduzindo a necessidade de CSS
customizado;

» Angular Material 17: Biblioteca de componentes User Interface (Interface do Usuario)
(Ul) baseada no Material Design, oferecendo elementos prontos como botdes, formu-
larios, dialogos, tabelas e cards;

» Angular CDK (Component Dev Kit): Conjunto de ferramentas para criar componentes
customizados com funcionalidades avangadas como drag-and-drop, overlays e acessi-
bilidade.

3.4 Tecnologias do lado servidor

3.4.1 Docker

O Docker é uma plataforma de conteinerizagdo que permite empacotar aplicagdes e
suas dependéncias em contéineres leves e portateis (MERKEL, 2014). Um contéiner é uma
unidade de software que inclui tudo o que é necessério para executar a aplicagdo: cédigo,
runtime, bibliotecas e configura¢des do sistema. A principal vantagem do Docker é garantir que
a aplicacéao funcione de forma consistente em qualquer ambiente, eliminando problemas do tipo
“funciona na minha maquina”.

O Docker Compose foi utilizado para orquestrar esses contéineres através
de arquivos distintos: docker-compose.local.yml para desenvolvimento e
docker—-compose.yml para producdo, definindo suas configuracoes, variaveis de ambi-
ente, volumes e redes. Isso simplificou o processo de desenvolvimento e deploy, garantindo
consisténcia entre ambientes.

3.4.2 Laravel

O Laravel é um framework PHP: Hypertext Preprocessor (Pré-processador de Hiper-
texto PHP) (PHP) moderno e elegante para o desenvolvimento de aplicacées web, conhecido

26

por sua sintaxe expressiva e ferramentas poderosas. Ele segue o padrdo arquitetural Model-
View-Controller (Modelo-Visao-Controlador) (MVC) (Model-View-Controller) e oferece funcio-
nalidades como roteamento, middlewares, Eloquent Object-Relational Mapping (Mapeamento
Objeto-Relacional) (ORM) para manipulacao de banco de dados, sistema de autenticacao, filas,

notificagbes e muito mais.

3.4.3 PostgreSQL

O PostgreSQL é um sistema gerenciador de banco de dados relacional open-source
conhecido por sua confiabilidade, robustez e conformidade com padrdes Structured Query Lan-
guage (Linguagem de Consulta Estruturada) (SQL). Ele oferece suporte a transagdes ACID,
indices avancados, triggers, views, stored procedures e tipos de dados complexos, como JSON
e arrays.

No contexto do Laravel, o conceito de migrations € implementado através do sistema
nativo que permite criar, modificar e reverter estruturas de tabelas de forma controlada e versi-
onada.

Cada migration representa uma mudanga especifica no banco de dados, como a cria-
cao de uma tabela, adicdo de uma coluna ou criacdo de indices. As migrations sdo executadas
sequencialmente, garantindo que todos os ambientes (desenvolvimento, teste e producéo) pos-
suam o mesmo esquema de banco de dados.

3.4.4 Cloudinary

O Cloudinary é um servico em nuvem especializado no gerenciamento, otimizacao e
entrega de midia (imagens e videos). Ele oferece funcionalidades como upload de arquivos,
transformacao de imagens (redimensionamento, recorte, aplicagdo de filtros), compresséo au-
tomatica, conversao de formatos e entrega através de Content Delivery Network (Rede de Dis-
tribuicao de Contetdo) (CDN) (Content Delivery Network).

3.45 JSON Web Token (JWT)

JSON Web Token (Token Web JSON) (JWT) é um padrao aberto (RFC 7519) para cri-
acao de tokens de acesso baseados em JSON, amplamente utilizado para autenticacao e au-
torizagcdo em aplicagbes web e APIs Representational State Transfer (Transferéncia de Estado
Representacional) (REST)ful (JONES; BRADLEY; SAKIMURA, 2015). Um JWT é composto
por trés partes: header, payload e signature. O payload contém informagdes sobre o usuério
(claims), como ID e roles, e a signature garante a integridade do token.

27

3.4.6 Firebase Cloud Messaging (FCM)

O Firebase Cloud Messaging € um servigo do Google Firebase que permite enviar notifi-
cacgodes push de forma confiavel para dispositivos méveis e navegadores web. O Firebase Cloud
Messaging (Mensageria em Nuvem do Firebase) (FCM) gerencia toda a infraestrutura de en-
trega de mensagens, incluindo retry automatico, priorizagao e suporte a multiplas plataformas.

3.5 Consideracoes

Este capitulo apresentou os fundamentos teéricos e tecnoldgicos que sustentam o de-
senvolvimento de aplicagdes web modernas, abordando metodologias ageis, testes automati-
zados, ferramentas de controle de versdo e tecnologias utilizadas no lado cliente e servidor.
Esses conceitos formam a base técnica que orienta as decisdes de implementagao e garantem
qualidade, escalabilidade e manutengéao eficiente do sistema.

28

4 MATERIAIS E METODOS

O presente capitulo descreve os recursos tecnologicos e metodolégicos empregados
no desenvolvimento do UTFPets, abordando tanto as ferramentas utilizadas quanto o processo
adotado para organizagao das tarefas, versionamento do cédigo e validagao do sistema. Inicial-
mente, sdo apresentados os materiais (ferramentas, linguagens e infraestrutura). Em seguida,
sao detalhados os métodos, que compreendem a aplicacdo de praticas ageis e o fluxo de de-
senvolvimento do projeto.

4.1 Materiais

As tecnologias empregadas no UTFPets foram escolhidas com base em critérios de ro-
bustez, escalabilidade e facilidade de manutengao. Conforme discutido no Capitulo 3, o projeto
foi estruturado a partir de principios de desenvolvimento web moderno, arquitetura em camadas
e conteinerizagéo.

O frontend foi implementado com o framework Angular 17, utilizado para construir
uma interface web responsiva e modular. A estilizacdo foi desenvolvida com Angular Material
e TailwindCSS, possibilitando um design limpo e adaptavel a diferentes dispositivos.

O backend foi desenvolvido em Laravel 12.x com PHP 8.2, framework escolhido por sua
produtividade, seguranga e integracao nativa com banco de dados relacionais. O PostgreSQL
foi adotado como sistema gerenciador de banco de dados pela confiabilidade e suporte a con-
sultas complexas.

Para gerenciamento de midia e otimizacdo de imagens, foi utilizado o servico Cloudi-
nary. A padronizagdo do ambiente de desenvolvimento e produgéo foi garantida por meio da
conteinerizagdo com Docker, que possibilitou a execugéo isolada dos componentes da aplica-
cao.

O controle de versao foi realizado com Git e hospedado no GitHub, que também serviu
como plataforma de integragao e entrega continua (CIl/CD) por meio do GitHub Actions. A apli-
cacao foi implantada na Google Cloud Platform (GCP), utilizando os servicos Compute Engine
e Cloud SQL, com autenticacdo gerenciada pelo Cloud IAM e certificados HTTPS fornecidos
pelo Let’s Encrypt.

Por fim, adotou-se uma arquitetura monorepo, centralizando frontend, backend e scripts
de implantagédo em um Unico repositério. Essa estrutura facilitou o controle de versodes, os testes
integrados e o0 processo de deploy.

29

4.2 Métodos

O desenvolvimento do UTFPets foi conduzido com base em metodologias ageis, adap-
tadas ao contexto de um projeto académico individual supervisionado por um orientador. Essa
abordagem favoreceu entregas incrementais e acompanhamento continuo da evolugéo do sis-
tema.

4.2.1 Aplicagdo do Scrum e Kanban

O Scrum serviu como estrutura principal para o gerenciamento do projeto, enquanto
o Kanban foi utilizado de forma complementar para o controle visual das tarefas. O professor
orientador atuou como Product Owner e Scrum Master, responsavel pela priorizagao de funci-
onalidades e pela remog¢ao de impedimentos. O autor desempenhou o papel de desenvolvedor,
executando as etapas de planejamento, implementacéo e testes.

As atividades foram organizadas em sprints de duas semanas, com planejamento no
inicio e revisdo ao final de cada ciclo. Nessas reunides, as entregas eram apresentadas ao
orientador, que fornecia feedbacks e sugestdes de aprimoramento. O quadro Kanban, integrado
ao GitHub, era composto pelas colunas To Do, Doing, Testing € Done, refletindo o andamento
das tarefas.

4.2.2 Planejamento e controle de tarefas

As funcionalidades foram descritas na forma de Historias de Usuario, permitindo pri-
orizacdo de acordo com a necessidade dos tutores de pets e clareza nos objetivos de cada

incremento. Um exemplo de histéria utilizada é:

"Como owner, quero cadastrar um novo pet para acompanhar suas refeicbes
e manter o controle nutricional.”

Cada historia foi desdobrada em tarefas menores (issues) vinculadas as branches cor-
respondentes no repositorio Git. Periodicamente, as tarefas concluidas eram revisadas e inte-
gradas a branch principal.

4.2.3 Integragéo continua e versionamento

O projeto utilizou o fluxo de trabalho GitFlow, definindo ramificagbes especificas para
funcionalidades, correcoes e versdes estaveis. A automacao de integracao e entrega continua
(CI/CD) foi realizada via GitHub Actions, responsavel por executar testes, gerar builds e pu-

30

blicar novas versdes no ambiente de testes ou producdo na GCP. Essa pratica reduziu falhas
manuais e aumentou a confiabilidade das entregas.

4.2.4 Ambientes e testes automatizados

O ambiente de desenvolvimento foi padronizado com Docker, garantindo consisténcia
entre as maquinas e simplificando a implantagdo. Foram definidos dois ambientes principais:
o ambiente de desenvolvimento, utilizado para testes e ajustes continuos, e 0 ambiente de
producao, implantado em contéineres na GCP.

Para garantir a qualidade do cddigo, foram aplicados testes automatizados em multiplos
niveis. No backend, utilizaram-se PHPUnit para testes de unidade e integragéo. No frontend,
o Playwright foi empregado para testes end-to-end, simulando interacdes reais de usuarios. A
execucao automatica desses testes foi integrada ao pipeline de CI/CD, assegurando que cada
alteracédo passasse por verificagdo antes da liberagao.

4.3 Consideracoes

O capitulo apresentou os principais recursos tecnolégicos e metodol6gicos utilizados no
projeto UTFPets, destacando o uso de ferramentas modernas e praticas ageis adaptadas ao
contexto académico. A combinacao de metodologias ageis, integracao continua e conteineriza-
cao garantiu um desenvolvimento organizado, seguro e escalavel.

No capitulo seguinte, sdo descritos os artefatos de analise e projeto do sistema, incluindo
modelagem de dados, diagramas € principais decisdes de arquitetura.

31

5 ANALISE E PROJETO DO SISTEMA

Este capitulo apresenta a concepcao do UTFPets de forma estruturada, abordando a pri-
orizacao de requisitos por meio do método MoSCoW, a arquitetura conceitual (usuarios, locais e
animais), as funcionalidades essenciais, a modelagem do banco de dados e os protétipos de in-
terface (wireframes). Ao final, faz-se referéncia ao Apéndice A, que detalha a estrutura completa
das tabelas do banco de dados.

5.1 Implementacao do método MoSCoW

Para priorizar as funcionalidades do UTFPets, foi aplicado o método MoSCoW, que clas-
sifica os requisitos em quatro categorias:

» Must Have (Essencial): Funcionalidades obrigatérias para o funcionamento do Mini-
mum Viable Product (Produto Minimo Viavel) (MVP), garantindo que a aplicacao seja
vidvel para o primeiro langamento.

» Should Have (Importante): Funcionalidades que melhoram a experiéncia do usuério
ou adicionam valor ao sistema, mas nao sao imprescindiveis na versao inicial.

« Could Have (Desejavel): Recursos adicionais que podem ser incluidos no futuro, am-
pliando as capacidades do sistema.

+ Won’t Have (Nao serao implementadas agora): Funcionalidades que, embora rele-
vantes, ndo estdo no escopo atual e podem ser consideradas em atualizagdes posteri-

ores.

Este capitulo foca nas funcionalidades Must Have, descritas ao longo das secoes se-
guintes, de modo a viabilizar o langamento inicial do UTFPets.

5.2 Estrutura do aplicativo
O UTFPets organiza os dados de maneira hierarquica para facilitar o gerenciamento
colaborativo. A estrutura conceitual é composta por:

« Usuario: Cada usuario pode cadastrar e gerenciar multiplos pets, definindo permis-
sbes para cuidadores ou estabelecimentos.

* Local: Representa o ambiente onde os pets estao localizados (ex.: residéncia, clinica
veterinaria). Um usudrio pode administrar varios locais.

» Pet: Cada animal possui um perfil individual (nome, espécie, raga, idade, peso, histérico
alimentar).

32

+ Informacdes: Incluem registros de alimentagao, lembretes médicos e atividades, pro-
porcionando um acompanhamento diario do pet.

Essa organizacao possibilita ao usuario manejar diversos pets e conceder niveis de
acesso diferenciados, garantindo uma experiéncia colaborativa no cuidado dos animais.

5.3 Papéis dos usuarios e permissoes

O UTFPets implementa um sistema de controle de acesso baseado em papéis (Role-
Based Access Control (Controle de Acesso Baseado em Fungdes) (RBAC) - Role-Based Ac-
cess Control), permitindo que diferentes usuérios tenham niveis distintos de permissées sobre
0s pets e suas informagdes. Foram definidos quatro papéis principais, cada um com responsa-
bilidades e permissdes especificas.

5.3.1 Owner (Proprietario)

O papel de Owner é atribuido ao usuario que cadastrou originalmente o pet no sistema.
Este papel possui controle total sobre todas as funcionalidades relacionadas ao pet. As permis-
sbes do Owner sio:

* Visualizar todas as informacdes do pet (perfil completo, histérico, estatisticas);
+ Editar dados do pet (nome, foto, peso, notas);

* Deletar o pet do sistema (soft delete);

« Criar, editar e deletar refeigdes;

« Criar, editar e deletar lembretes;

» Gerenciar compartilhamento (convidar, aceitar, revogar acesso);

+ Alterar papéis de outros usuarios compartilhados;

+ Transferir ownership (funcionalidade futura).

5.3.2 Editor

O papel de Editor permite que o usuario contribua ativamente com o cuidado do pet,
registrando informagdes e acompanhando a rotina, mas sem permissao para alterar dados es-
senciais do pet ou gerenciar compartilhamentos. As permissdes do Editor sdo:

* Visualizar todas as informacdes do pet;

5.3.3

33

+ Criar, editar e deletar refeicdes;

 Visualizar lembretes;

Registrar tarefas concluidas;

NAO PODE: editar dados do pet, deletar o pet, gerenciar compartilhamento.

Casos de uso tipicos:
» Familiares que participam da alimentacéo do pet;
» Dog walkers e pet sitters;

* Profissionais de hotéis para pets.

Viewer (Visualizador)

O papel de Viewer oferece acesso somente leitura as informagdes do pet, ideal para

situagdes onde o usuario precisa apenas acompanhar o pet sem interferir na rotina estabelecida.

As permissdes do Viewer sdo:

5.3.4

* Visualizar informacdes do pet (perfil, fotos);
+ Visualizar histérico de refeigdes;

 Visualizar lembretes;

NAO PODE: criar, editar ou deletar qualquer informacao.

Casos de uso tipicos:
» Familiares que querem acompanhar, mas nao participam diretamente dos cuidados;
* Veterinarios para consulta do historico;

* Membros da familia em viagens.

Administrador do Sistema

Além dos papéis relacionados aos pets, existe o papel de Administrador do Sistema,

com permissdes especiais para gestdo global do UTFPets. As permissbes do Administrador

sao:

 Visualizar todos os usuarios cadastrados;

Alterar permissdes de usuarios (promover/rebaixar administradores);

34

+ Visualizar, editar e deletar todos os pets do sistema (para fins de moderagdo e manu-

tengao);

» Acessar logs de auditoria completos;

» Gerenciar configuracdes globais do sistema.

Criar, editar e deletar refeicoes e lembretes de qualquer pet;

Importante: As permissdes administrativas destinam-se exclusivamente a gestdo e mo-

deragao do sistema, nao substituindo o papel de Owner na administragao cotidiana dos pets.

5.3.5 Matriz de permissdes

O Quadro 2 apresenta uma visdo consolidada das permissdes por papel.

Quadro 2 — Matriz de permissoes por papel de usuario

Acao Owner | Editor | Viewer | Admin
Visualizar pet Sim Sim Sim Sim
Editar pet Sim - - Sim
Deletar pet Sim - - Sim
Criar/Editar refeicao Sim Sim - Sim
Criar/Editar lembrete Sim - - Sim
Gerenciar compartilhamento Sim - - -
Acessar audit log - - - Sim
Gerenciar usuarios - - - Sim

Fonte: Autoria propria (2025).

5.4 Histoérias de Usuario prioritarias (Must Have)

As histérias de usuario apresentadas a seguir representam as funcionalidades Must

Have do sistema UTFPets, isto é, aquelas consideradas essenciais para o funcionamento mi-

nimo viavel do produto. Essas historias contemplam os quatro papéis do sistema — Owner

(proprietario), Editor (cuidador com permissado de edi¢éo), Viewer (cuidador com permissao

apenas de visualizacao) e Administrador do Sistema (gestédo global) — abrangendo as ope-

ragbes fundamentais para o acompanhamento nutricional, o cuidado colaborativo e a gestéao

segura dos dados dos pets.

35

5.4.1 Histérias de Usuério - Owner (Proprietario)

« HUO0O1: Como owner, quero cadastrar um perfil detalhado do meu pet — incluindo
nome, idade, raga, porte e restricbes alimentares — para personalizar o acompanha-

mento nutricional.

« HU002: Como owner, quero registrar e monitorar as refeicdes do meu pet, anotando
horarios e quantidades, para assegurar uma dieta equilibrada e regular.

« HU003: Como owner, quero receber lembretes automaticos sobre alimentagéo e me-
dicacdo do meu pet, para manter uma rotina consistente de cuidados.

» HUO004: Como owner, quero compartilhar as informag¢des do meu pet com cuidadores
autorizados (editors ou viewers), para facilitar o cuidado colaborativo quando eu néo
estiver presente.

« HUO005: Como owner, quero gerenciar as permissdes de acesso dos cuidadores, defi-
nindo quais dados podem ser visualizados ou editados, para garantir a seguranca e o
controle das informacdes.

5.4.2 Histérias de Usuério - Editor (cuidador com edicao)

» HU006: Como editor, quero visualizar o perfil completo do pet, incluindo horarios e
detalhes de alimentacao, para manter o cuidado padronizado conforme as orientagdes
do owner.

« HUO0O07: Como editor, quero registrar refeicbes e marcar tarefas como concluidas —
como alimentar ou medicar o pet — para que o owner possa acompanhar as atividades
realizadas.

5.4.3 Histérias de Usuério - Viewer (cuidador com visualizacao)
» HUO008: Como viewer, quero visualizar o perfil do pet e o historico de refei¢des, para
acompanhar a rotina do animal sem poder realizar alteragdes.

» HUO009: Como viewer, quero visualizar lembretes e notificacdes relacionados ao pet,
para estar informado sobre os cuidados necessarios.

36

5.4.4 Historias de Usuério - Administrador do Sistema

« HUO010: Como administrador, quero garantir a seguranca e a privacidade dos dados dos
usuarios, aplicando autenticacao e criptografia, para proteger as informagdes sensiveis
do sistema.

« HUO11: Como administrador, quero gerenciar o cadastro de usuarios e pets, mantendo
a integridade e a consisténcia da base de dados.

+ HUO012: Como administrador, quero acessar logs de auditoria do sistema, para rastrear
acOes importantes e garantir a conformidade com politicas de seguranca.

Essas histérias de usudrio descrevem as principais funcionalidades do sistema sob a
perspectiva de cada perfil, orientando o planejamento e o desenvolvimento incremental do UTF-
Pets.

5.5 Modelagem do Banco de Dados

O banco de dados do sistema foi projetado utilizando o PostgreSQL, seguindo os prin-
cipios de normalizacao e integridade referencial. A modelagem buscou garantir desempenho,
consisténcia e facilidade de manutencao, refletindo os principais relacionamentos entre usua-
rios, pets, locais, lembretes e notificagcoes.

5.5.1 Visao Geral do Modelo Relacional

A Figura 5 apresenta o diagrama entidade-relacionamento (ER) completo do UTFPets,
contemplando as principais entidades do sistema e suas associagdes. O modelo é composto
por 11 tabelas principais (users, locations, pets, meals, reminders, shared_pets, shared_loca-
tions, notifications, push_subscriptions, audit_logs e a tabela de migrations do Laravel). As 10
primeiras sao tabelas de dominio da aplicacdo, enquanto migrations € uma tabela técnica do
framework Laravel para versionamento do esquema do banco de dados.

ide
user_id @
action
entity_type
entity id
old_values
new values
ip_address
user_agent
created at

updated_at

Figura 5 — Diagrama entidade-relacionamento do banco de dados

uwuid NN

bigint

character varying(255) NN
character varying(255) NN

character varying(255)
json

json

racter varying(255)

character varying(255)

timestanp(8)

timestanp(0)

do
userid &
title

body
data
channel
status
created_at

updated_at

shared locations
size

uuid NN

ide

location_id &

user_id &

role

invitation_status

invited_by &

created_at

updated_at

uuid NN

bigint NN

character varying(255) NN
text NN

json

character va (255) NN

5) NN

character vary
timestanp(8)

timestanp(8)

uuid NN
bigint NN

character varying(255) NN

bigint NN

character varying(255) NN

ide

- userid &
action
entity
entity_id
payload
i
user_agent

created_at

ido
user_id @
name

- species
breed
birth_date
weight
photo
notes
created_at
updated_at
deleted_at

location_id &

uuid NN

bigint

character varying(255) NN

character varying(255) NN

character varying(255)

Json
character varying(255)
character varying(255)

timestamp(@) NN

bigint NN

bigint INN

varying(255) NN

varying(255) NN
ter varying(255)
date
numeric(8,2)
character varying(255)
text
tinestam(0)
tinestam(2)
tinestam(0)
uuid

character varying(20)

dietary_restrictions text

ido

- petid®
user_id &

role

invitation_status

invited_by &
created_at

updated_at

S ide

user_id &
name
description
timezone
created_at
updated at

deleted_at

uuid NN

bigint NN

character varying(255) NN

text

character varying(255) NN

stanp(8)
timestamp(2)

timestanp(9)

push_subseriptions

ide
user_id &
endpoint
p2s6dh
auth
created_at

updated_at

bigint NN —+/

ido

uuid NN

bigint NN

bigint NN >

character varying(255) NN

character varying(255) NN

bigint NN
timestanp(0)

timestamp(@)

name
email
email_verified_at
password
remember _token
created_at
updatad_at
timezone

is_admin

bigint NN
bigint NN >

text NN

character varying(255) NN

character varying(255) NN -

mp (0)

stanp(0)

character varying(255) NN

character varying(255) NN

‘timestanp(@)

character vary

charactel

varying(100)

‘timestanp(e)

‘timestanp(0)

character varying(255) NN

boolean NN

Fonte: Autoria propria (2025).

O modelo contempla as seguintes 11 tabelas principais:

scheduled_for
consumed_at
notes
created at
updated_at

deleted_at

37

ide bigint NN

: petid @ bigint NN
food_type character varying(2s5) NN
quantity nuneric(8, 2) NN
unit character varying

timestamp(@) NN

timestamp(@)

ide uuid NN
pet.id & bigint NN
title character varying(255) NN
description text

scheduled_at
repeat_rule

status

channel
created_at
updated_at
days_of week
timezone_override
snooze_minutes_default
active_window_start

active_window_end

Users: armazena as informagdes dos usuarios e credenciais de acesso;

Locations: representa os locais fisicos onde os pets residem;

Pets: contém os dados dos animais, como espécie, raca e peso;

Meals: registra o histérico de refeicdes, horarios e quantidades;

Reminders: gerencia lembretes e notificagdes recorrentes;

SharedPets: controla o compartilhamento de pets entre usuarios;

timestamp(@) NN

cter varying(255)
varying(255) NN
varying(255) NN
timestanp(0)
timestanp(@)
Json

character varying(2s5)
integer

‘time(@)

time(@)

dbdiagram.io

SharedLocations: controla o compartilhamento de locations entre usuarios;

Notifications: armazena mensagens e alertas enviados aos usuarios;

PushSubscriptions:

push;

vincula os dispositivos aos usuarios para envio de notificagdes

38

» AuditLogs: mantém o registro detalhado de auditoria com valores antigos e novos de
alteracoes;

» Migrations: tabela técnica do Laravel para controle de versionamento do esquema do
banco de dados.

Os relacionamentos principais sao:

« Um usuario pode gerenciar varios pets e locations;

Cada pet pertence a um usudrio e opcionalmente a uma location;

Cada pet possui varias refeicoes e lembretes;

As tabelas SharedPets e SharedLocations permitem colaboragdo entre usuarios;
« Um usuario pode receber mdltiplas notificacoes e possuir varias assinaturas push;

+ Todas as entidades criticas possuem rastreabilidade via AuditLogs.

Essa estrutura garante a consisténcia das operacoes e a extensibilidade do sistema,
permitindo a adicao de novas funcionalidades sem impacto significativo na base de dados. O
detalhamento completo das tabelas, incluindo atributos, chaves e restricées, encontra-se no
Apéndice A.

5.5.2 Evolugdo da modelagem durante o desenvolvimento

Durante o processo de desenvolvimento, a modelagem do banco de dados passou por
uma evolucao arquitetural importante que ampliou significativamente as capacidades do sis-
tema. Inicialmente, a modelagem conceitual previa que os pets fossem vinculados diretamente
aos usuarios através de uma relagdo simples entre as tabelas users e pets. No entanto,
durante a implementacao das funcionalidades essenciais, identificou-se a oportunidade de in-
troduzir o conceito de Locations (locais fisicos), criando uma hierarquia organizacional mais
flexivel e realista.

A introducdo da tabela 1ocations trouxe 0os seguintes beneficios:

» Organizacao espacial: Permite que usuarios gerenciem pets distribuidos em diferen-
tes locais fisicos (residéncias, clinicas veterinarias, hotéis para pets);

» Compartilhamento hierarquico: Possibilita compartilhar uma location inteira (via
shared_locations), propagando automaticamente o acesso a todos os pets vin-
culados aquele local;

39

» Configuracdo de timezone: Cada location possui seu préprio fuso horéario
(t imezone), garantindo que lembretes sejam disparados nos horarios corretos, in-
dependentemente da localizaco fisica dos pets;

 Escalabilidade: Facilita a expanséao futura do sistema para cenarios profissionais (cli-

nicas, pet shops) onde multiplos animais residem no mesmo local.

Esta mudanga arquitetural demandou ajustes incrementais na estrutura do banco de
dados:

» Adicdo databela 1ocations com relacionamento 1 — % com users;

* Inclusdo do campo location_id (nullable) na tabela pets, permitindo que pets

sejam opcionalmente associados a uma location;

» Criacdo da tabela shared_locations para suportar compartilhamento de locais
completos;

 Ajustes nas policies de autorizacao para verificar permissdes tanto por pet individual
quanto por location.

Essa refatoragéo foi realizada de forma controlada através do sistema de migrations do
Laravel, garantindo versionamento e rastreabilidade das alteragbes. O resultado final é uma
modelagem mais robusta e adequada aos casos de uso reais identificados durante o desenvol-
vimento, mantendo a integridade dos dados e a performance do sistema.

5.6 Protétipos das telas

O design de interface do UTFPets foi concebido seguindo principios de User Experience
(User Experience (Experiéncia do Usuario) (UX)) e User Interface (Ul), priorizando usabilidade,
acessibilidade e consisténcia visual. Esta se¢do apresenta os protétipos implementados das
principais telas do sistema.

5.6.1 Telas de autenticag&o

As telas de login e cadastro sdo os pontos de entrada dos usuérios no UTFPets, desen-
volvidas para serem simples, intuitivas e transmitirem confianca. A Figura 6 apresenta ambas
as interfaces lado a lado.

40

Figura 6 — Telas de autenticagdao do UTFPets

Junte-se ao UTFPets!
Bem-vindo ao UTFPets! c hoje mesme

Tela de login Tela de cadastro
Fonte: Autoria propria (2025).

Elementos principais da tela de login:
* Logo do UTFPets centralizado;
» Campo de e-mail com validagao de formato;

» Campo de senha com opg¢ao de visualizar/ocultar;

Botao “Entrar” com destaque visual;

* Links para recuperagéo de senha e criagdo de conta.

5.6.2 Dashboard (Pagina Inicial)

Apo6s o login, o usuario é direcionado ao Dashboard, mostrado na Figura 7, que apre-
senta uma visao geral dos pets e atividades recentes.

Figura 7 — Dashboard do UTFPets

Bem-vindo ao UTFPets!

A forma mais mod dos

4

Controle de Aliment

Fonte: Autoria prépria (2025).

Componentes do Dashboard:
» Cards dos pets cadastrados com fotos;
» Lembretes do dia em destaque;

» Resumo de refeigdes recentes;

Botao flutuante para agdes rapidas;

» Menu de navegacéo inferior.

41

5.6.3 Gerenciamento de pets

A Figura 8 apresenta as interfaces de listagem e cadastro de pets, permitindo navegacao
rapida e registro completo de informagdes com upload de foto via Cloudinary.

Figura 8 — Sistema de gerenciamento de pets

. 0= . 0
pyeee
o)
Nenhum pet cadastrado ainda
Listagem de pets Cadastro de pet

Fonte: Autoria propria (2025).

5.6.4 Gerenciamento de locais

O sistema de gerenciamento de locais onde os pets residem esté ilustrado na Figura 9,
que apresenta tanto a listagem quanto o cadastro de locations.

Figura 9 — Sistema de gerenciamento de locations
= ° ° JJJJJJ

Localizagses Compartilhadas

Nenhuma localizagao cadastrada

Listagem de locations Cadastro de location
Fonte: Autoria propria (2025).

5.6.5 Gerenciamento de refeicoes

A Figura 10 apresenta a interface para registro e acompanhamento das refeicées dos
pets, com histdrico e estatisticas.

42

Figura 10 — Pagina de gerenciamento de refei¢oes
B v = o @u

« Registrar Refeicéo

,,,,,,,,,

Fonte: Autoria propria (2025).

5.6.6 Sistema de lembretes

O sistema de lembretes com recorréncia avangada e notificacdes automaticas esta apre-

sentado na Figura 11.

Figura 11 — Sistema de gerenciamento de lembretes
T .

Lembretes Py ——

Nenhum lembrete configurado

Listagem de lembretes Formulario de criagao
Fonte: Autoria propria (2025).

5.6.7 Sistema de compartilhamento

O sistema completo de compartilhamento colaborativo com controle de permissdes esta
apresentado na Figura 12, que mostra a pagina de gerenciamento e o formulario de comparti-
Ihamento, além da Figura 13 que apresenta a gestao de convites pendentes.

Figura 12 — Sistema de gerenciamento de compartilhamentos
c 0= CE -)

Compartilhamento

Compartitar Acesso

Compartinar Aces

Pagina de gerenciamento Formulario de compartilhamento
Fonte: Autoria propria (2025).

43

Figura 13 — Pagina de convites pendentes

B ° 0=

© st Convites de Compartilhamento

Fonte: Autoria propria (2025).

5.6.8 Sistema de notificacoes

A Figura 14 apresenta o sistema completo de notificagbes com histérico e controle de
leitura, mostrando tanto 0 modal de notificagées quanto a pagina completa.

Figura 14 — Sistema de notificacoes do UTFPets

Usuario
Ver perfil

Notificacoes

Notificagdes

Nenhum notficac s

Nenhuma notificacdo

Ver todas as notificacdes

Pagina completa de notificagcbes

Modal de notificagdes
Fonte: Autoria propria (2025).

5.6.9 Painel administrativo

O painel administrativo completo para gestdo do sistema esta ilustrado nas figuras a
seguir, apresentando as diferentes interfaces e permissdes disponiveis para usuarios comuns e
administradores.

Figura 15 — Comparacao entre perfis de usuario
T

Perfil de usuério padrao Perfil com permissées administrativas
Fonte: Autoria propria (2025).

44

Figura 16 — Painel de gerenciamento de usuarios (Admin)

Fonte: Autoria propria (2025).

Figura 17 — Visualizacao de todos os pets (Admin)

VisualizarPets

Fonte: Autoria propria (2025).

Figura 18 — Painel de auditoria e logs do sistema (Admin)

Fonte: Autoria propria (2025).

5.6.10 Consideragbes sobre o design

O design das interfaces seguiu os seguintes principios:

« Consisténcia Visual: Uso padronizado de cores, tipografia (Roboto) e componentes
do Angular Material e TailwindCSS;

» Responsividade: Layouts adaptativos que funcionam em dispositivos moéveis, tablets
e desktops;

+ Acessibilidade: Contraste adequado (Web Content Accessibility Guidelines (Diretrizes
de Acessibilidade para Conteudo Web) (WCAG) 2.1), tamanhos de toque adequados
(44x44px minimo), navegacao por teclado;

45

» Feedback Visual: Animacdes suaves e estados de loading claros para melhor experi-

éncia do usuario;

* Progressive Enhancement: Funcionalidades que degradam graciosamente em nave-
gadores mais antigos.

Todas as telas foram desenvolvidas como Single Page Application (SPA) utilizando An-
gular 17, proporcionando transi¢des fluidas e experiéncia préxima a aplicativos nativos.

5.7 Consideracoes

A analise e o projeto do UTFPets abordaram o método MoSCoW para priorizar as fun-
cionalidades, estabelecendo as caracteristicas fundamentais (Must Have) que compdem a pri-
meira versao do sistema. Também foi definida a arquitetura hierarquica (usuario, local, animal),
o modelo de banco de dados em PostgreSQL e a concepgao das telas principais por meio de
wireframes.

46

6 DESENVOLVIMENTO DO SISTEMA

Este capitulo apresenta o processo de desenvolvimento do UTFPets, realizado entre
maio e novembro de 2025, totalizando 100 commits distribuidos ao longo de sete meses. O
desenvolvimento caracterizou-se por ciclos iterativos e incrementais, organizados em trés fases
principais: estruturagéo inicial, implementacao das funcionalidades essenciais e transicao para
ambiente de producéo.

Embora os conceitos de Scrum e sprints tenham sido apresentados como fundamen-
tacao metodoldgica nos capitulos anteriores, o desenvolvimento adotou uma abordagem adap-
tada ao contexto académico individual, com iteracées mais flexiveis e organizadas por conjuntos
funcionais. A fase inicial (maio de 2025) concentrou-se na validacao arquitetural, seguida por
um periodo de suspensao das atividades devido a compromissos académicos, e retomada em
outubro de 2025 com foco no desenvolvimento das funcionalidades prioritarias. Por essa razao,
a narrativa deste capitulo estd organizada por fases funcionais, refletindo a dindmica real de

implementagéo do sistema.

6.1 Arquitetura geral do sistema

Antes de detalhar o desenvolvimento das funcionalidades, esta secao apresenta uma
visdo geral da arquitetura do UTFPets e a forma como os principais componentes se integram.

6.1.1 Camadas e organizagao do projeto

O UTFPets adota uma arquitetura em camadas baseada no padrdao MVC, na qual o
Laravel 12.x implementa a camada de controle e I6gica de negécio, enquanto o Angular 17
compde a camada de apresentagdo. A comunicagao entre as camadas é feita por meio de uma
AP| RESTful que troca dados em formato JSON.

O projeto foi estruturado em um monorepo, reunindo em um Unico repositério Git o
codigo do backend, do frontend, os arquivos de configuragcao do Nginx, scripts de deploy e testes
End-to-End (Extremo a Extremo) (E2E). Essa organizacao facilita o versionamento atémico, os
testes integrados e o deploy sincronizado de todas as partes do sistema.

6.1.2 Backend e persisténcia de dados

O backend é composto por 11 controllers e 10 models organizados em Laravel, respon-
saveis por implementar autenticagdo, cadastro de usuarios, gerenciamento de pets, refeicoes,
lembretes, notificagcdes, compartilhamentos e operagcdes administrativas. A persisténcia de da-
dos é realizada em um banco PostgreSQL, cujo esquema é versionado por meio de 17 migra-

47

tions, que criam e mantém tabelas como users, pets, meals, reminders, locations,
notifications, shared_pets, shared_locations eaudit_logs.

Camadas adicionais de seguranca e organizacao incluem middlewares para autentica-
cao e autorizacgao, policies para controle de acesso a recursos especificos e jobs para proces-
samento assincrono de lembretes e envio de notificagdes.

6.1.3 Autenticacao, notificacoes e midia

A autenticacdo dos usuarios é implementada com JSON Web Tokens (JWT), utilizando
0 pacote php-open—-source-saver/jwt—auth. Apds o login, o token é armazenado no
cliente e enviado no cabecalho Authorization em cada requisicdo, sendo validado por
middlewares no backend.

As notificagbes push sdo gerenciadas por meio do Firebase Cloud Messaging (FCM),
integrado ao PWA. Eventos relevantes (como lembretes préximos ou compartilhamentos acei-
tos) disparam notificagbes através de events e listeners, que enviam mensagens para os dispo-
sitivos inscritos.

As imagens dos pets sdo armazenadas e otimizadas pelo servico Cloudinary, que rea-
liza compresséao e entrega via CDN, reduzindo o tempo de carregamento das telas e o consumo
de banda.

6.1.4 Infraestrutura e conteinerizacao

Em ambiente de producgao, o UTFPets é executado em contéineres Docker hospeda-
dos na Google Cloud Platform (GCP). A aplicacdo é dividida, em produgcao, em cinco con-
téineres principais: backend Laravel, frontend Angular (build estatico), Nginx (proxy reverso),
Cloud SQL Proxy (conexao segura com o banco gerenciado) e Certbot (obtengéao e renovagao
automatica de certificados Secure Sockets Layer (Camada de Soquetes Seguros) (SSL)/TLS).

O acesso externo é realizado via Nginx, que recebe as requisicbes em HTTPS,
encaminha-as ao backend e serve 0s arquivos estaticos do frontend. O banco de dados é for-
necido pelo servigo gerenciado Cloud SQL, com backups automaticos e alta disponibilidade.

6.1.5 Fluxo de requisicoes

De forma geral, cada requisi¢cao enviada pela interface Angular percorre o seguinte cami-
nho: é recebida pelo servidor Nginx em HTTPS, encaminhada ao backend Laravel, validada por
middlewares de autenticagdo JWT e autorizacdo, processada pelo controller correspondente e,
por fim, tem seus dados persistidos ou consultados no PostgreSQL por meio do Eloquent ORM.
O resultado € entdo retornado ao cliente em formato JSON.

48

Com essa visao geral da arquitetura consolidada, as se¢des seguintes descrevem como
o sistema foi construido ao longo das sprints, bem como as principais decisdes tomadas em
cada etapa.

6.2 Fase inicial: estrutura base e prototipacao

6.2.1 Contexto e planejamento

Ao iniciar o desenvolvimento em maio de 2025, a primeira fase concentrou-se em es-
tabelecer os alicerces tecnoldgicos do projeto. O objetivo principal era validar as escolhas ar-
quiteturais e criar um protétipo funcional que demonstrasse a viabilidade técnica da solucéo
proposta, correspondendo a implementagéo parcial das histérias de usuério HU001 (cadastro
de pets) e HUO10 (autenticagédo e seguranga).

6.2.2 Atividades realizadas

A fase inicial concentrou-se em trés frentes principais de trabalho. Primeiramente, foi cri-
ado o repositorio GitHub "TCC_UTFPets_API", estabelecendo a estrutura inicial tanto do projeto
Laravel para backend quanto do projeto Angular para frontend, além da configuragao basica do
.gitignore para controle de versionamento adequado.

No backend, foi realizada a instalacdo do Laravel 12 com PHP 8.2, seguida pela defi-
nicdo das primeiras migrations (users e pets), estruturacao inicial de Controllers e Models, e
configuracdo das rotas APl fundamentais. Paralelamente, o frontend foi inicializado com An-
gular 17, estabelecendo a estrutura basica de componentes, configuracdo de roteamento e
implementagéo das primeiras telas (login e cadastro).

As funcionalidades implementadas nesta etapa incluiram o sistema basico de autentica-
¢ao, o Create, Read, Update, Delete (Criar, Ler, Atualizar e Excluir) (CRUD) inicial de pets e as
primeiras rotas de API, formando a base sobre a qual o restante do sistema seria construido.

6.2.3 Resultados da fase inicial

Ao final dessa primeira fase em maio de 2025, obteve-se um protétipo funcional com
autenticacao basica e listagem de pets, validando a arquitetura proposta. A estrutura base do
projeto estava definida, incluindo a primeira versdo do README documentado. Esse resultado
forneceu confianga para avancar com a implementagéo das funcionalidades essenciais do sis-
tema.

Apo6s a conclusao dessa etapa inicial em maio, as atividades de desenvolvimento foram
suspensas até outubro devido a compromissos académicos. Em outubro, o projeto foi retomado

49

com foco na implementacao das funcionalidades essenciais (Must Have) definidas pelo método
MoSCoW.

6.3 Fase principal: implementacao das funcionalidades essenciais

6.3.1 Contexto da retomada

Com a retomada do desenvolvimento em outubro de 2025, esta fase concentrou-se na
implementagéo do nucleo funcional do sistema. O objetivo era desenvolver as funcionalidades
categorizadas como Must Have, essenciais para viabilizar o MVP. Esse periodo registrou aproxi-
madamente 40 commits e representou a consolida¢éo das principais capacidades da aplicacao,
implementando as histérias de usuario HU002 a HUOO7.

6.3.2 Narrativa do desenvolvimento

O desenvolvimento neste periodo seguiu uma sequéncia légica de prioridades. Inicial-
mente, consolidou-se o sistema de autenticacao com JWT (HU010), implementando o pa-
cote php-open-source-saver/jwt-auth versao 2.2. O AuthController foi estendido para suportar
registro, login, logout e renovacao de tokens, enquanto no frontend foram criados AuthGuard
e Authinterceptor para gerenciar o fluxo de autenticacédo. Esse trabalho garantiu que todas as
requisicoes subsequentes fossem protegidas e vinculadas ao usuario autenticado, conforme
ilustrado nas telas de login e cadastro apresentadas nas Figuras 6a e 6b.

Com a autenticacao estabelecida, a pré6xima etapa concentrou-se no sistema de ge-
renciamento de pets (HU001), implementando o CRUD completo através do PetController. O
Model Pet foi estruturado com relacionamentos complexos (User, Location, Meals, SharedPets,
Reminders), permitindo a navegacao entre entidades. A integracdo com Cloudinary possibili-
tou o upload e otimizacdo automatica de fotos, enquanto o soft delete garantiu que registros
pudessem ser recuperados caso necessario. No frontend, foram desenvolvidos componentes
modulares (pet-list, pet-form, pet-detail, pet-card) seguindo a arquitetura de Standalone Com-
ponents do Angular 17, conforme mostrado na Figura 8a e 8b.

O endpoint POST /api/pets exemplifica o padrdo de interacdo entre frontend e bac-
kend adotado no UTFPets. A Listagem 1 apresenta uma requisicao tipica para cadastro de pet.

O 00 N N W R W N =

O 00 N AN WK R W N =

50

Listagem 1 — Requisicao HTTP para cadastro de pet

POST https://api.utfpets.online/api/pets
Authorization: Bearer eyJ0eXAi0iJKVI1QiLCJhbGc...
Content-Type: application/json

"name": "Rex",

"species": "dog",

"breed": "Labrador",
"birth_date": "2020-05-15",
"weight": 30.5,

"gender": "male",

"location id": "550e8400-e29b-41d4-a716-446655440000"

Fonte: Autoria propria (2025).

Ao receber a requisicao, o middleware de autenticacao verifica o token JWT, e o control-
ler responsavel (PetController@store) realiza a validagao dos dados, checa as permis-
sOes do usuario sobre a location informada e, em seguida, cria o registro no banco PostgreSQL.
Caso uma foto seja enviada, o arquivo é enviado ao Cloudinary, que retorna uma Uniform Re-
source Locator (Localizador Uniforme de Recursos) (URL) publica para exibicao. A Listagem 2
mostra a resposta retornada em caso de sucesso.

Listagem 2 — Resposta HTTP de sucesso ao cadastrar pet

HTTP/1.1 201 Created
Content-Type: application/json

"id": "123e4567-e89b-12d3-a456-426614174000",
"name": "Rex",

"species": "dog",

"breed": "Labrador",

"birth_date": "2020-05-15",

"weight": 30.5,

"gender": "male",

"photo_url": "https://res.cloudinary.com/...",
"location_id": "550e8400-e29b-41d4-a716-446655440000",
"created at": "2025-11-05T14:30:00.000000z",
"updated_at": "2025-11-05T14:30:00.000000Z"

Fonte: Autoria propria (2025)..

51

Esse exemplo ilustra o padrao RESTful adotado na API do UTFPets e a forma como as
camadas de autenticagao, validagao, persisténcia e integragdo com servigos externos (Cloudi-
nary) se articulam em uma Unica operagao.

Na sequéncia, foi desenvolvido o sistema de refeicoes (HU002), criando o MealCon-
troller com funcionalidades de agendamento (scheduled_for) e controle de consumagéao
(consumed_at). O sistema permite registrar diferentes tipos de alimento com quantidades e
unidades especificas, além de oferecer filtros por pet e periodo temporal. Essa funcionalidade
permite aos owners monitorar a dieta de seus pets de forma detalhada, conforme ilustrado na
Figura 10.

Em paralelo, implementou-se o sistema de compartilhamento colaborativo (HU004,
HUO005, HUO008 e HU009), um dos diferenciais do UTFPets. O SharedPetController gerencia
convites com trés estados (pending, accepted, revoked) e trés papéis distintos (owner, editor,
viewer), cada um com permissdes granulares definidas na Quadro 2. O sistema valida as per-
missdes em cada operacao através de Policies, garantindo que usudarios somente executem
acOes autorizadas. No frontend, o share-dialog facilita o envio de convites, enquanto o share-list
exibe os compartilhamentos ativos, conforme mostrado nas Figura 12a, Figura 12b e Figura 13.

Paralelamente ao desenvolvimento das funcionalidades, foi estabelecida uma cultura
de testes automatizados. Ao final desse ciclo, 0 sistema contava com mais de 88 testes imple-
mentados em PHPUnit, cobrindo cenarios de autenticagao, gerenciamento de pets, refei¢cdes e
compartilhamento. Os feature tests simulam fluxos completos de usuario, enquanto as factories
geram dados de teste consistentes. A estratégia RefreshDatabase garante isolamento entre
testes, eliminando efeitos colaterais.

6.3.3 Entregas e aprendizados

Ao final dessa fase, a parte principal do sistema estava totalmente funcional, com upload
de imagens otimizadas, compartilhamento colaborativo operacional e cobertura robusta de tes-
tes. A documentacao da API foi consolidada utilizando Swagger/OpenAPI, facilitando o entendi-
mento dos endpoints e acelerando a integracao frontend-backend.

Um aprendizado importante desse periodo foi a necessidade de refatoragdes incremen-
tais. Inicialmente, os pets eram vinculados diretamente aos usuérios, mas identificou-se a opor-
tunidade de introduzir o conceito de Locations, criando uma hierarquia mais flexivel. Essa mu-
danca arquitetural, embora tenha demandado ajustes no cddigo existente, ampliou significativa-
mente as possibilidades de uso do sistema.

52

6.4 Fase avancada: funcionalidades diferenciadas e PWA

6.4.1 Contexto e motivagéao

Com o nucleo funcional consolidado, esta fase voltou-se para funcionalidades avangadas
que diferenciariam o UTFPets de solugbes similares. Este periodo registrou aproximadamente
36 commits e teve como principais entregas: a formalizagcado do conceito de Locations, sistema
de lembretes com recorréncia complexa (HU003), notificacdes multicanal, transformacédo em
PWA e painel administrativo (HUO11 e HU012).

6.4.2 Narrativa do desenvolvimento

Nesta fase, formalizou-se o sistema de Locations, transformando o conceito inicial em
uma funcionalidade completa. O LocationController foi implementado com CRUD completo, en-
quanto o Model Location estabeleceu relacionamentos com Users e Pets. Uma inovagao impor-
tante foi o SharedLocationController, que permite compartilhar locations inteiras, propagando
automaticamente o acesso a todos os pets vinculados. Cada location possui seu préprio time-
zone, garantindo que lembretes sejam disparados nos horarios corretos independentemente da
localizagéo fisica. No frontend, os componentes location-list, location-form e location-detail ofe-
recem interface intuitiva para gerenciamento espacial, conforme ilustrado na Figura 9a e Figura
9b.

Em seguida, desenvolveu-se o sistema de lembretes com recorréncia avancada
(HU003), uma das funcionalidades mais complexas do UTFPets. O ReminderController expde
7 endpoints que suportam regras de repeticdo (none, daily, weekly, custom) através do enum
RepeatRule. O sistema utiliza jobs assincronos com idempoténcia, executados por um schedu-
ler Laravel que verifica lembretes pendentes a cada minuto. Customizac¢des avangadas incluem
dias da semana especificos (days_of_week), janelas de horario ativas (act ive_window),
substituicao de timezone (t imezone_override) e tempo de adiamento (snooze). As acdes
de snooze e complete permitem aos usuarios gerenciar lembretes de forma flexivel, conforme
mostrado na Figura 11a e Figura 11b.

O sistema de notificacdes multicanal foi implementado em paralelo, criando o Notifi-
cationController com suporte a trés canais (db, email, push) através do enum NotificationChan-
nel. O sistema gerencia estados de notificagdo (queued, sent, failed, read) e oferece histérico
com paginacao, contador de mensagens nao lidas e marcacéo individual ou em lote, conforme
apresentado na Figura 14a e Figura 14b. A arquitetura baseada em Events e Listeners per-
mite que notificacdes sejam disparadas automaticamente em resposta a eventos do sistema,
promovendo desacoplamento e manutenibilidade.

53

A transformacdo do UTFPets em um PWA completo foi realizada na sequéncia. Utili-
zando o pacote @angular/service-worker do Angular, foi configurado um Service Worker que
intercepta requisicoes de rede e implementa cache inteligente de assets e respostas de API.
O manifest.webmanifest define metadados que permitem instalacido em dispositivos méveis e
desktop. A integragdo com Firebase Cloud Messaging habilita notificagdes push mesmo com o
aplicativo fechado, aumentando significativamente o engajamento dos usuarios. O modo offline
garante que funcionalidades basicas permanecam acessiveis sem conexao a internet.

Complementando as funcionalidades essenciais, implementou-se o painel administra-
tivo (HUO11 e HUO12), criando o AdminController protegido por middleware especifico. O pai-
nel permite listar e gerenciar usuarios, alterar permissoes (is_admin flag), visualizar todos os
pets cadastrados no sistema e acessar logs de auditoria. No frontend, os componentes admin-
users e admin-dashboard oferecem interface dedicada para administradores, conforme ilustrado
na Figura 15a, Figura 15b, Figura 16, Figura 17 e Figura 18.

Complementando as funcionalidades administrativas, criou-se a infraestrutura de audi-
toria, com a tabela audit_1logs registrando agbes criticas (created, updated, deleted, vi-
ewed). O sistema armazena alteragoes em formato JSON, incluindo valores antigos e novos,
além de capturar IP address e user agent. Embora a trait Auditable tenha sido estruturada para
futura implementacao automatica, a base para rastreabilidade completa estava estabelecida.

6.4.3 Entregas e reflexdes

Ao final dessa fase, o UTFPets havia evoluido significativamente. As funcionalidades
avancgadas estavam totalmente operacionais: PWA com suporte offline, lembretes com recor-
réncia complexa, notificagbes multicanal e painel administrativo. A documentagao técnica foi
expandida para 17 arquivos, cobrindo arquitetura, API e procedimentos de deploy.

Um desafio importante desse periodo foi 0 balanceamento entre complexidade técnica e
usabilidade. O sistema de lembretes, por exemplo, oferece configura¢cdes avangadas (timezone
override, active windows) sem comprometer a simplicidade para usuarios basicos que desejam
apenas agendar lembretes simples. Essa abordagem de "poténcia progressiva"tornou-se um
principio de design do projeto.

6.5 Fase final: deploy, producéo e refinamentos

6.5.1 Contexto da transi¢do para produgéo

A fase final do desenvolvimento (final de outubro e novembro de 2025) marcou a tran-
sicdo do UTFPets do ambiente de desenvolvimento para producao. Este periodo registrou 36
commits, concentrados em infraestrutura, automacao de deploy, otimiza¢des de performance e

54

refinamentos de interface. O objetivo era disponibilizar o sistema de forma confiavel, segura e
com experiéncia de usuario polida.

6.5.2 Narrativa do desenvolvimento

Nesta fase final, o foco principal foi a infraestrutura de producao no Google Cloud
Platform. Foi provisionada uma Virtual Machine (Maquina Virtual) (VM) e2-small no Compute
Engine (Debian 12, regidao southamerica-east1-b), escolhida por sua proximidade geografica
e custo-beneficio adequado para o projeto. O Cloud SQL PostgreSQL foi configurado como
servigo gerenciado, eliminando preocupagdes com backups, atualizag¢des e alta disponibilidade.
O Cloud SQL Proxy foi implementado para conexao segura entre a aplicagdo e o banco de
dados, utilizando Service Accounts e politicas Identity and Access Management (Gerenciamento
de Identidade e Acesso) (IAM) restritivas. Docker e Docker Compose foram instalados na VM,
permitindo orquestragéo de 5 containers: app (backend Laravel), cloud-sql-proxy, nginx (proxy
reverso), certbot (certificados SSL) e frontend (build Angular).

Em paralelo, implementou-se o pipeline CI/CD com GitHub Actions, criando o work-
flow deploy-vm.yml com trigger automatico em push para a branch main. O pipeline executa:
backup automatico do banco de dados, deploy via gcloud scp, build de containers Docker, exe-
cucao de migrations e otimizacdes Laravel, e health check automatico. Um script PowerShell foi
desenvolvido para sincronizar secrets entre 0 ambiente local e o GitHub, facilitando a manuten-
cao de variaveis de ambiente sensiveis.

A configuracdo de HTTPS com Let’s Encrypt foi concluida utilizando Certbot contai-
nerizado para obtengéo e renovacgao automatica de certificados SSL/TLS. O Nginx foi configu-
rado para servir trafego HTTPS e redirecionar automaticamente requisicdes HTTP. Trés domi-
nios foram estabelecidos: https://utfpets.online (frontend), https://api.utfpets.online (backend) e
https://api.utfpets.online/swagger (documentacéo interativa).

Foram realizadas otimizacoes de performance fundamentais. No backend, foram apli-
cados cache de configuracao Laravel e otimizagdo de queries com indices estratégicos. No
frontend, a compilagdo foi configurada em modo producao (Angular build —prod) com lazy lo-
ading de modulos, reduzindo significativamente o tempo de carregamento inicial. O Nginx foi
ajustado para compressao gzip, diminuindo o tamanho dos assets transferidos.

Paralelamente, a interface passou por um redesign completo com TailwindCSS, ado-
tando componentes modernos e responsivos. O Pet Form foi redesenhado com validagbes vi-
suais claras, enquanto o Pet List recebeu melhorias de debugging e usabilidade. Um design
system consistente foi estabelecido, garantindo uniformidade visual em toda a aplicacao.

A reestruturacdo do projeto em arquitetura Monorepo consolidou backend, frontend,
testes E2E, configuragdes nginx e scripts de automagdo em uma estrutura organizada (bac-
kend/, frontend/, tests/e2e/, nginx/, scripts/). O README foi completamente reescrito, incluindo

O 00 N A W R W =

—_ =
- O

12

Listagem 3 — Estrutura do repositorio monorepo do UTFPets

55

TCC_UTFPets_API/
backend/

app/
Http/

Controllers/

Middleware/
Models/
Enums/
database/
migrations/
tests/
frontend/
src/
app/
auth/
pets/
meals/
reminders/
assets/
angular. json
nginx/
nginx.conf
tests/
ele/
docker—-compose.yml

(88+ testes PHPUNnit)

(demais features)

(Testes Playwright)

Fonte: Autoria propria (2025)..

instrucdes de instalacao, desenvolvimento, deploy e arquitetura do sistema. A Listagem 3 apre-

senta um resumo da organizagao final.

Os testes E2E com Playwright foram configurados nessa fase final, criando a estrutura

/tests/e2e/ com cenarios que simulam fluxos completos de usuario. Esses testes foram integra-

dos ao pipeline CI/CD, garantindo que cada deploy somente ocorra apds validagao automatica

dos fluxos criticos.

A fase final demandou 32 commits de ajustes incrementais, incluindo correcées de

configurag@o nginx, refinamentos no health check, ajustes no setup de SSL, melhorias no ser-

vice worker do PWA, correcdes de timeout e permissoes, e otimizagdes no pipeline CI/CD. Esse

processo iterativo de refinamento demonstrou a importancia de testes em ambiente de produgéao

real e a necessidade de monitoramento continuo.

56

6.5.3 Entregas e licdes do deploy

Ao final dessa fase de deploy, 0 UTFPets estava em producdo em https://utfpets.online,
com APl documentada em https://api.utfpets.online/swagger. O HTTPS estava configurado com
certificados validos, o deploy automatico funcionava perfeitamente via GitHub Actions, a per-
formance estava otimizada (tempos de resposta < 200ms) e a interface apresentava design
moderno e responsivo.

O processo de deploy revelou licoes valiosas. A configuragao inicial do CI/CD deman-
dou multiplas iteragdes (32 commits de ajustes), evidenciando que automacgao de infraestrutura
é complexa mas fundamental. A escolha por Monorepo simplificou o versionamento atémico,
permitindo que mudancas no backend e frontend fossem deployadas sincronizadamente. O uso
de containers Docker garantiu paridade entre ambientes de desenvolvimento e producao, elimi-
nando o classico problema "funciona na minha maquina".

6.6 Consideracoes Finais do Desenvolvimento

O desenvolvimento do UTFPets foi concluido com sucesso em 7 meses (Maio-
Novembro 2025), resultando em uma aplicagdo web completa e robusta com as seguintes mé-
tricas:

6.6.1 Estatisticas finais

O desenvolvimento ocorreu no periodo de maio a novembro de 2025, totalizando 100
commits distribuidos ao longo dos sete meses. A distribuicdo temporal dos commits reflete a
dindmica de trabalho adotada: 4 commits em maio de 2025 concentraram-se na inicializagao
do projeto, 76 commits em outubro de 2025 representaram o desenvolvimento principal das
funcionalidades essenciais, e 32 commits em novembro de 2025 foram dedicados ao deploy e
ajustes finais em ambiente de produgéo.

6.6.2 Meétricas quantitativas do sistema

A Tabela 1 apresenta um resumo quantitativo dos principais componentes desenvolvidos
no UTFPets, evidenciando a complexidade e abrangéncia do sistema.

57

Tabela 1 — Métricas quantitativas do sistema UTFPets

Componente Quantidade Descricao

Backend

Controllers 11 AuthController, PetController, Me-
alController, ReminderController,
NotificationController, SharedPet-
Controller, SharedLocationController,
LocationController, ~ AdminController,
UserController, PushSubscriptionCon-
troller

Models 10 User, Pet, Meal, Reminder, Notification,
SharedPet, SharedlLocation, Location,
PushSubscription, AuditLog

Migrations 17 Estrutura completa do banco de dados
com suporte a UUID

Enums 7 RepeatRule, ReminderStatus, Shared-
PetRole, InvitationStatus, Notification-
Channel, NotificationStatus

Testes Automatizados 88+ Testes unitarios e de integracdo com
PHPUnit

Banco de Dados

Tabelas 11 users, pets, meals, reminders, notifica-
tions, shared_pets, shared locations,
locations, push_subscriptions, audit_-
logs, audit

API RESTful

Endpoints 45+ Distribuidos entre autenticagao, pets,
refeicbes, lembretes, notificagdes,
compartilhamento e administracao

Frontend

Features 8 auth, pets, meals, reminders, locations,
sharing, notifications, admin

Componentes Angular 40+ Componentes standalone organizados
por feature

Infraestrutura

Containers Docker 5 app, cloud-sql-proxy, nginx, certbot,
frontend

Documentacao

Arquivos Técnicos 17 Documentagdo detalhada de arquite-

tura, APl e deployment

Swagger/OpenAPI

Documentacéo interativa completa da
API

Essas métricas demonstram a robustez e complexidade do sistema desenvolvido, que

implementa funcionalidades avancadas mantendo cédigo limpo, testavel e bem documentado.

58

6.6.3 Arquitetura e cédigo

A arquitetura final do sistema compreende, no backend, 11 Controllers, 10 Models, 17
Migrations e 7 Enums que estruturam toda a l6gica de negdcio. O frontend foi organizado em
8 features principais com mdultiplos componentes reutilizaveis. A qualidade do cédigo é assegu-
rada por mais de 88 testes automatizados implementados em PHPUnit. A documentagao téc-
nica conta com 17 arquivos detalhados que cobrem arquitetura, deployment e boas praticas. A
API RESTful completa esta documentada com Swagger, facilitando a integragdo e manutencgao
do sistema.

6.6.4 Tecnologias utilizadas

O stack tecnoldgico adotado combina ferramentas modernas e consolidadas no mer-
cado. No backend, utilizou-se Laravel 12 com PHP 8.2 e PostgreSQL como sistema gerenciador
de banco de dados. O frontend foi desenvolvido em Angular 17, estilizado com TailwindCSS e
Angular Material para componentes visuais. A infraestrutura de producao baseia-se em Doc-
ker para containerizagdo, Google Cloud Platform (Plataforma de Nuvem do Google) (GCP)
para hospedagem, Nginx como servidor web e proxy reverso, e Let's Encrypt para certificados
SSL/TLS. Servigos complementares incluem Cloudinary para otimizagéo de imagens, Firebase
FCM para notificagbes push e GitHub Actions para automacéao de CI/CD.

6.6.5 Funcionalidades implementadas

Todas as 12 histérias de usuario apresentadas (HU001 a HUO12) foram completamente
implementadas na versado atual do UTFPets. Nao houve alteragdes, remogdes ou adi¢cdo de
novas histérias durante o processo de desenvolvimento, garantindo que todos os requisitos
essenciais definidos na fase de analise foram atendidos. O sistema implementado contempla
integralmente:

+ HU0O1 a HU0O5 (Owner): Gerenciamento completo de pets, refeicoes, lembretes e
compartilhamento com controle de permissoes;

+ HU006 e HUO07 (Editor): Visualizacao e registro de atividades com permissdes de
edicao controladas;

+ HUOO08 e HUO009 (Viewer): Acesso somente leitura para acompanhamento sem inter-

feréncia;

+ HU010 a HU012 (Administrador): Seguranca, gestao de usuarios e auditoria completa
do sistema.

59

O sistema implementa um conjunto completo de funcionalidades que atendem aos ob-
jetivos propostos. A autenticacdo JWT garante seguranga no acesso aos recursos. O CRUD
de pets inclui upload otimizado de imagens via Cloudinary. O sistema de refeicbes mantém
histérico detalhado de alimentacdo com quantidades e horarios. O compartilhamento colabo-
rativo suporta tanto pets individuais quanto locations inteiras, com trés niveis de permissoes
(owner, editor, viewer). Os lembretes oferecem recorréncia avangada com suporte a diferentes
timezones. O sistema de notificacées opera em trés canais (banco de dados, email e push).
A aplicagao funciona como PWA completo com suporte a modo offline. O painel administrativo
permite gestdo de usuarios e auditoria detalhada do sistema. Por fim, o deploy automatizado
com CI/CD garante entregas rapidas e confiaveis.

6.6.6 Cobertura dos objetivos especificos

As historias de usuario implementadas cobrem integralmente os cinco objetivos especi-
ficos estabelecidos no Capitulo 1:

» Objetivo 1 - Sistema de cadastro: Coberto por HU001 (cadastro de perfil detalhado
dos pets);

» Objetivo 2 - Lembretes e notificacoes: Coberto por HU003 (lembretes automaticos
de alimentacao e medicacao);

» Objetivo 3 - Controle alimentar: Coberto por HUO02 (registro € monitoramento de
refeicdbes com controle de porgdes);

» Objetivo 4 - Compartilhamento com permissoes: Coberto por HU004, HU0O05,
HU006, HU007, HU008 e HUOO9 (sistema completo de compartilhamento com trés
niveis de permissdes);

» Objetivo 5 - Painel administrativo: Coberto por HU010, HU011 e HUO12 (seguranca,
gestao de usuarios e auditoria).

Esta correspondéncia direta entre objetivos e histérias garante que o sistema desenvol-
vido atende plenamente aos propdsitos estabelecidos para este trabalho.

6.6.7 Desafios superados

1. Arquitetura Monorepo: Decisdo de manter frontend e backend em um Unico reposi-
torio simplificou versionamento atémico e testes integrados.

2. Deploy Automatizado: Configuragao completa de CI/CD com GitHub Actions, in-
cluindo 32 commits de ajustes até alcangar estabilidade total.

60

3. PWA e Offline Mode: Implementagéo de Service Workers e cache inteligente permi-
tindo funcionamento offline.

4. Sistema de Lembretes Complexo: Jobs assincronos com idempoténcia e suporte a
recorréncia avancada (dias da semana, janelas de horario, timezone override).

5. Compartilhamento Flexivel: Sistema dual de compartilhamento (pets individuais +
locations inteiras) com controle granular de permissoes.

6.6.8 Ligbes aprendidas

O processo de desenvolvimento proporcionou aprendizados valiosos sobre engenharia
de software moderna. A adogao de metodologia agil com entregas incrementais permitiu valida-
cao continua das funcionalidades desenvolvidas. Os testes automatizados provaram ser essen-
ciais para realizar refatoracées com segurancga e confianca. A manutencdo de documentacao
técnica detalhada facilitou significativamente a manutencéo e evolugcao do codigo ao longo do
projeto. Uma arquitetura bem planejada desde o inicio mostrou-se fundamental para facilitar a
adicao de features avangcadas sem necessidade de reescritas estruturais. Por fim, a implemen-
tacdo de CI/CD demonstrou reduzir significativamente tanto o tempo de deploy quanto erros
humanos durante o processo de publicacao.

O projeto demonstrou com sucesso a aplicacao de conceitos modernos de engenharia
de software, resultando em uma solugao robusta, escalavel e pronta para uso em producgéao.

61

7 CONCLUSAO

O desenvolvimento do UTFPets representou uma jornada de aprendizado técnico, meto-
dolégico e pessoal, resultando em uma aplicacéao web funcional voltada ao apoio de tutores no
controle de alimentag¢do e cuidados de seus animais de estimagdo. A solugéo integra, em uma
Unica plataforma, recursos de cadastro de pets, registro de refeigdes, lembretes inteligentes e
colaboragao entre multiplos cuidadores.

Conforme detalhado no Capitulo 6, todas as histdrias de usuério definidas na fase de
andlise foram implementadas, cobrindo integralmente os objetivos especificos apresentados na
Introdugéo. O sistema oferece:

» gerenciamento completo de perfis de pets, incluindo informacdes nutricionais relevan-
tes;

registro estruturado de refei¢cdes, permitindo acompanhar horarios e quantidades;

* lembretes configuraveis para alimentacao, medicacao e outras rotinas;

compartilhamento com controle granular de permissdes entre tutores e cuidadores;

» um painel administrativo para gestao global de usuarios, pets e auditoria.

Dessa forma, o UTFPets atende ao propédsito central do trabalho: disponibilizar uma
ferramenta capaz de organizar e tornar mais seguro o cuidado diario com os animais.

Entre os principais desafios enfrentados destacam-se a modelagem de um sistema de
lembretes recorrentes com multiplos fusos horarios, a implementacédo do modo offline via PWA,
o desenho do modelo de compartilhamento com diferentes papéis de usuério e a configuracao
do pipeline de deploy automatizado em nuvem. A superagao desses pontos exigiu estudo apro-
fundado, experimentacéo e refatoracdes sucessivas, consolidando o amadurecimento do autor
em engenharia de software.

Como contribui¢des, o UTFPets oferece uma solugao integrada que retne funcionalida-
des até entdo dispersas em aplicativos distintos, com foco em colaboragao entre cuidadores
e controle detalhado da rotina alimentar dos pets. Para além do produto em si, o projeto de-
monstra, de forma pratica, a aplicacdo de conceitos modernos de desenvolvimento web, testes,
seguranca, conteinerizagdo e operacdo em nuvem.

O UTFPets encontra-se operacional em ambiente de producao e pronto para ser utili-
zado por tutores e cuidadores, cumprindo os objetivos propostos e abrindo espago para novas
evolugdes. A experiéncia de desenvolvimento consolidou conhecimentos adquiridos ao longo
do curso e reforcou a importancia de boas praticas de projeto, testes e automacao.

Com a base técnica estabelecida e os requisitos iniciais atendidos, o sistema esté pre-
parado para incorporar melhorias mais avangadas, como recursos de inteligéncia artificial, in-

62

tegracbes com dispositivos I0T e servigos de telemedicina veterinaria, que sao discutidos na
secao de Trabalhos futuros.

7.1 Trabalhos futuros

O UTFPets foi desenvolvido como um MVP, focado nas funcionalidades Must Have de-
finidas pelo método MoSCoW. As histérias de usuério prioritarias foram implementadas e aten-
dem aos objetivos especificos deste trabalho, mas ha um conjunto de funcionalidades classifi-
cadas como Should Have, Could Have e Won't Have que compéem um roadmap consistente
para a evolugao da plataforma.

No grupo das funcionalidades importantes (Should Have), destacam-se:

» Conteudo educativo: criagdo de uma area com materiais sobre nutricdo e cuidados
gerais, curados por especialistas, para apoiar decisdes dos tutores.

» Personalizacao avancada de lembretes: embora o sistema ja ofereca diferentes re-
gras de recorréncia e fusos horarios, futuros aprimoramentos poderao incluir presets
por tipo de atividade, perfis de lembrete por pet e preferéncias globais de notificacao.

 Graficos de evolucao do peso: utilizacdo dos dados ja armazenados no banco para
gerar visualizagdes que auxiliem na avaliacao do estado corporal e na prevencao de
obesidade ou desnutricao.

Entre as funcionalidades desejaveis (Could Have), podem ser citadas:

« Historico analitico: expansao das telas de refeicoes e atividades com filtros avanca-
dos, relatérios por periodo e exportagdo de dados.

* Integracao com calendarios externos: sincronizagéo de lembretes com o calendario
do dispositivo ou servicos como Google Calendar, centralizando compromissos do pet
na agenda do usuario.

» Sugestoes automaticas de dieta: geracao de recomendacdes de porgdes e tipos de
alimento considerando espécie, idade, porte e histérico registrado.

As funcionalidades de longo prazo (Won’t Have na versao atual) envolvem mudan-
cas mais profundas e uso intensivo de tecnologias emergentes. Entre elas, destacam-se:

* modulos de dietas personalizadas elaboradas por veterinarios diretamente no aplica-

tivo;
* integragdo com servigos de telemedicina veterinaria e prontuario eletrénico;

« sistemas de recomendacgao de produtos com apoio de inteligéncia artificial;

63

* integragdo com dispositivos IoT (comedouros inteligentes, coleiras com GPS, balancas
conectadas) para registro automatico de dados.

Além das funcionalidades orientadas ao usuario, ha espago para melhorias técnicas
relevantes, como a migracdo gradual para uma arquitetura de microservigos, adogdo de ca-
che distribuido e CDN global, fortalecimento de mecanismos de seguranga (autenticagcdo em
duas etapas, auditorias perioddicas) e internacionalizacao da plataforma com suporte a multiplos
idiomas, moedas e regulamentacdes (Lei Geral de Prote¢cdo de Dados (LGPD), General Data
Protection Regulation (Regulamento Geral de Protecdo de Dados) (GDPR), entre outras).

Como préximos passos imediatos, recomenda-se a realizagdo de testes beta com
tutores reais, a coleta sistematica de feedback e métricas de uso, e a priorizagao das funciona-
lidades futuras com base nas necessidades observadas. A partir dessa validacdo, o UTFPets
podera evoluir de um MVP académico para uma solugdo de mercado robusta, ampliando seu
impacto na salude e bem-estar dos animais de estimacao.

64

REFERENCIAS

ANDERSON, D. J. Kanban: Successful evolutionary change for your technology business.
Seattle, WA: Blue Hole Press, 2010.

Association for Pet Obesity Prevention. 2024 Pet Obesity Prevalence Survey. 2024.
https://www.petobesityprevention.org/2024-survey. Acessado em: 15 jan. 2025.

CHANDLER, M. Nutrition for weight management in cats and dogs. UK Vet: Companion
Animal, v. 27, n. 5, p. 234242, 2022.

DRIESSEN, V. A successful Git branching model. 2010. https://nvie.com/posts/
a-successful-git-branching-model/. Accessed: 2023-08-01.

FASCETTI, A.; DELANEY, S. Applied Veterinary Clinical Nutrition. [S./]: Wiley-Blackwell,
2012.

FEWSTER, M.; GRAHAM, D. Experiences of Test Automation: Case Studies of Software
Test Automation. Boston: Addison-Wesley, 2012. ISBN 978-0321754068.

GAROUSI, V.; FELDERER, M.; MANTYL&, M. V. The need for multivocal literature reviews
in software engineering: Complementing systematic literature reviews with grey literature.
Information and Software Technology, v. 94, p. 62—81, 2018. ISSN 0950-5849.

GERMAN, A. J. Updates on obesity management for dogs and cats. Veterinary Clinics of
North America: Small Animal Practice, v. 52, n. 5, p. 1053-1070, 2022.

Instituto Pet Brasil. Censo Pet: 149,6 milh6es de animais de estimacao no Brasil. 2022.
http://institutopetbrasil.com/. Acessado em: 15 jan. 2025.

JONES, M.; BRADLEY, J.; SAKIMURA, N. JSON Web Token (JWT). [S./], 2015. Internet
Engineering Task Force.

KOGAN, L. R.; HELLYER, P. W. Access to veterinary care in the us: A preliminary study of pet
owner experiences. Animals, v. 13, n. 2, p. 340, 2023.

LAFLAMME, D. P.; FLAMMER, S. A.; HANSEN, B. D. Obesity in dogs and cats: A metabolic and
endocrine disorder. Topics in Companion Animal Medicine, v. 23, n. 3, p. 126—-131, 2008.

MERKEL, D. Docker: lightweight linux containers for consistent development and deployment.
Linux Journal, v. 2014, n. 239, p. 2, 2014.

MESZAROS, G. xUnit Test Patterns: Refactoring Test Code. Boston: Addison-Wesley
Professional, 2007. ISBN 978-0131495050.

RUSSELL, A.; FIRTMAN, M. Progressive Web Apps. Sebastopol, CA: O’Reilly Media, 2018.

SCHWABER, K.; SUTHERLAND, J. The Scrum Guide: The Definitive Guide to Scrum. 2017.
https://scrumguides.org/scrum-guide.html. Accessed: 2023-08-01.

https://www.petobesityprevention.org/2024-survey
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
http://institutopetbrasil.com/
https://scrumguides.org/scrum-guide.html

APENDICE A - Estruturas das Tabelas do Banco de Dados

65

66

Este apéndice apresenta o detalhamento completo do esquema relacional do banco
de dados do UTFPets, desenvolvido em PostgreSQL. As tabelas foram implementadas por
meio de migrations no framework Laravel, garantindo versionamento, integridade referencial e
reprodutibilidade do ambiente de dados.

A.1 Tabela Users (Usuarios)

A tabela Users armazena as informacoes dos usuarios e credenciais de acesso ao sis-
tema.

Figura 19 — Estrutura da tabela Users

FH users

123 id

AL name

AZ emall

) email_verified_at
AZ password

A7 remember_token
/) created_at

(/) updated_at

AZ timezone

< 1s_admin

Fonte: Autoria propria (2025).

Campos principais:

+ id: identificador Unico (PK);

67

* name: nome completo do usuario;

* email: enderego de e-mail Unico;

* password: senha criptografada (bcrypt);

* timezone: fuso horario preferencial;

» is_admin: define se o0 usuario possui privilégios administrativos;

* created_at, updated_at: timestamps de auditoria.

A.2 Tabela Locations (Locais)

Representa os locais fisicos onde os pets residem, podendo ser compartilhados entre
usuarios.

Figura 20 — Estrutura da tabela Locations

locations

id

123 user_id

AL name

.
AZ descrniption

AZ timezone

(/) created_at
() updated_at
() deleted_at

Fonte: Autoria prépria (2025).

Campos principais:

+ id:identificador tnico (UUID, PK);

» user_id: referéncia ao proprietario (FK — users);
» name: nome do local (Unico por usuario);

» description: descricdo opcional;

* timezone: fuso horario especifico;

» deleted_at: campo de soft delete.

68

69

A.3 Tabela Pets

Contém os dados dos animais cadastrados pelos usuarios, vinculando-os a um tutor €,
opcionalmente, a uma localizacao.

Figura 21 — Estrutura da tabela Pets

BB pets

123 id

123 user_id

A name

AZ species

AZ breed

() birth_date
123 weight

A-Z photo

AL notes

() created_at
() updated_at
) deleted_at
2= location_id
AL size

AZ dietary_restrictions

Fonte: Autoria propria (2025).

70

Campos principais:

+ id: identificador unico (PK);

* user_id: referéncia ao tutor (FK — users);

* location_1id: referéncia ao local (FK — locations);
* name: nome do pet;

* species, breed: espécie e raca;

* birth_date, weight: dados biolégicos;

» photo: URL da imagem no Cloudinary;

* notes: observagoes;

« deleted_at: soft delete.

A.4 Tabela Meals (Refeicoes)

Registra o histérico de refeicbes de cada pet, permitindo o controle de horarios, tipos e
quantidades de alimento.

Figura 22 — Estrutura da tabela Meals

FH meals
123 d

123 pet_id

AZ food_type

123 quantity

AZ unit

() scheduled_for
(/) consumed_at
AL notes

(/) created_at

(/) updated_at
(/) deleted_at

Fonte: Autoria propria (2025).

Campos principais:

+ id:identificador unico (PK);

» pet_1id: referéncia ao pet (FK — pets);
+ food_type:tipo de alimento;

* quantity: quantidade servida;

72

e unit: unidade de medida;
* scheduled_for, consumed_at: horarios de agendamento e consumo;

* notes, deleted_at: observagdes e exclusdo logica.

A.5 Tabela Reminders (Lembretes)

Gerencia os lembretes configurados pelos usuarios, com suporte a recorréncia e notifi-
cagbes automaticas.

Figura 23 — Estrutura da tabela Reminders

FH reminders

=] id

123 pet_id
AT title
AZ description |
() scheduled_at

AZ repeat_rule

AL status

AZ channel

() created_at

() updated_at,

| days_of_week

AL timezone_override

123 snooze_minutes_default
() active_window_start

(/) active_window_end

Fonte: Autoria propria (2025).

73

Campos principais:

id: identificador tnico (UUID, PK);

pet_id: referéncia ao pet (FK — pets);

title, description:titulo e descricdo do lembrete;
scheduled_at: data e hora agendadas;

repeat_rule, status, channel: controle de recorréncia e status;
days_of_week, timezone_override: personalizagbes avangadas;

active_window_start, active_window_end: janelas de horario validas.

A.6 Tabelas de Compartilhamento

As tabelas SharedPets e SharedLocations permitem o compartilhamento colaborativo

de pets e locais entre diferentes usudrios, com papéis e permissoes distintas.

Figura 24 — Estrutura da tabela SharedPets

FH shared_pets
27 id

123 pet_id

123 user_id

AT role

A invitation_status
123 invited_by

() created_at

(/) updated_at

Fonte: Autoria propria (2025).

Figura 25 — Estrutura da tabela SharedLocations

4 shared _locations
2= i

2= location_id

123 user_id

ﬂE_ru:uIE
AT invitation_status

123 invited_by
(/) created_at

(/) updated_at

Fonte: Autoria propria (2025).

Ambas incluem os campos:

+ id:identificador Unico (UUID, PK);

* user_id: usuario convidado (FK — users);

» role: papel do usuério (owner, editor, viewer);

* invitation_status: status do convite (pending, accepted, revoked);

* invited_by: referéncia ao usuario que realizou o convite.

A.7 Tabela Notifications (Notificacoes)

Registra o histérico de notificagdes enviadas aos usudrios via banco, e-mail ou push.

Figura 26 — Estrutura da tabela Notifications

notifications

id

123 user_id
AT title

AZ body

| | data
AZ channel
A status

(/) created_at

(/) updated_at

Fonte: Autoria propria (2025).

Campos principais:

id: identificador tnico (UUID, PK);
user_1id: destinatario (FK — users);
title, body: conteldo da notificagao;
data: informacoes adicionais (JSON);
channel: canal de envio;

status: estado da notificagdo (queued, sent, failed, read).

75

76

A.8 Tabela PushSubscriptions (Assinaturas Push)

Gerencia as assinaturas de notificagdes push vinculadas a cada usuario do PWA.

Figura 27 — Estrutura da tabela PushSubscriptions

FH push_subscriptions
23 id I

123 user_id
AZ endpoint
AZ p256dh
AT auth

(/) created_at

(/) updated_at

Fonte: Autoria propria (2025).

Campos principais:

id: identificador tnico (PK);
» user_1id: referéncia ao usuério (FK — users);
* endpoint: URL do endpoint de notificacao;

* public_key, auth_token: dados de autenticagao criptografica.

A.9 Tabela AuditLogs (Logs de Auditoria)

Mantém o histérico de agcbes executadas pelos usuarios, garantindo rastreabilidade com-
pleta.

77

Figura 28 — Estrutura da tabela AuditLogs

FH audit_logs
25| wd

123 user_id
AT action

AZ entity_type
AZ entrty_id

|} old_values

|} new_values
AZ 1p_address
AL user_agent
(/) created_at

(/) updated_at

Fonte: Autoria prépria (2025).

Campos principais:
+ id:identificador unico (PK);

* user_id: autor da agdo (FK — users);

A.10

78

* action:tipo da acdo (created, updated, deleted, viewed);
* model_type, model_1id:referéncia ao registro afetado;
* changes: objeto JSON com valores antigos e novos;

* ip_address, user_agent: dados de origem da requisigao.

Resumo dos Relacionamentos

O modelo relacional do UTFPets implementa os seguintes relacionamentos principais:

* User 1 — x Pets;

« User 1 — x Locations;

Pet 1 — x Meals e Reminders;

Pet 1 — x SharedPets;

Location 1 — *« SharedLocations;
» User 1 — x Notifications e PushSubscriptions;

+ Todas as entidades criticas séo registradas em AuditLogs.

	Agradecimentos
	Dedicatória
	Resumo
	Abstract
	Lista de Figuras
	Listagem de Códigos Fonte
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivo geral
	1.2 Objetivos específicos
	1.3 Justificativa
	1.4 Estrutura do trabalho

	2 Trabalhos Relacionados
	2.1 Petzillas
	2.2 FuncionalPet
	2.3 PetDesk
	2.4 Pet Diet Designer
	2.5 Estudo comparativo

	3 Referencial Teórico
	3.1 Processo de desenvolvimento
	3.1.1 Scrum
	3.1.2 Kanban
	3.1.3 Testes Automatizados

	3.2 Ferramentas de desenvolvimento
	3.2.1 Git, GitFlow e GitHub
	3.2.2 Google Cloud Platform (GCP)
	3.2.3 Monorepo

	3.3 Tecnologias do lado cliente
	3.3.1 Angular
	3.3.2 Progressive Web App (PWA)
	3.3.3 Bibliotecas e Ferramentas Complementares

	3.4 Tecnologias do lado servidor
	3.4.1 Docker
	3.4.2 Laravel
	3.4.3 PostgreSQL
	3.4.4 Cloudinary
	3.4.5 JSON Web Token (JWT)
	3.4.6 Firebase Cloud Messaging (FCM)

	3.5 Considerações

	4 MATERIAIS E MÉTODOS
	4.1 Materiais
	4.2 Métodos
	4.2.1 Aplicação do Scrum e Kanban
	4.2.2 Planejamento e controle de tarefas
	4.2.3 Integração contínua e versionamento
	4.2.4 Ambientes e testes automatizados

	4.3 Considerações

	5 ANÁLISE E PROJETO DO SISTEMA
	5.1 Implementação do método MoSCoW
	5.2 Estrutura do aplicativo
	5.3 Papéis dos usuários e permissões
	5.3.1 Owner (Proprietário)
	5.3.2 Editor
	5.3.3 Viewer (Visualizador)
	5.3.4 Administrador do Sistema
	5.3.5 Matriz de permissões

	5.4 Histórias de Usuário prioritárias (Must Have)
	5.4.1 Histórias de Usuário - Owner (Proprietário)
	5.4.2 Histórias de Usuário - Editor (cuidador com edição)
	5.4.3 Histórias de Usuário - Viewer (cuidador com visualização)
	5.4.4 Histórias de Usuário - Administrador do Sistema

	5.5 Modelagem do Banco de Dados
	5.5.1 Visão Geral do Modelo Relacional
	5.5.2 Evolução da modelagem durante o desenvolvimento

	5.6 Protótipos das telas
	5.6.1 Telas de autenticação
	5.6.2 Dashboard (Página Inicial)
	5.6.3 Gerenciamento de pets
	5.6.4 Gerenciamento de locais
	5.6.5 Gerenciamento de refeições
	5.6.6 Sistema de lembretes
	5.6.7 Sistema de compartilhamento
	5.6.8 Sistema de notificações
	5.6.9 Painel administrativo
	5.6.10 Considerações sobre o design

	5.7 Considerações

	6 DESENVOLVIMENTO DO SISTEMA
	6.1 Arquitetura geral do sistema
	6.1.1 Camadas e organização do projeto
	6.1.2 Backend e persistência de dados
	6.1.3 Autenticação, notificações e mídia
	6.1.4 Infraestrutura e conteinerização
	6.1.5 Fluxo de requisições

	6.2 Fase inicial: estrutura base e prototipação
	6.2.1 Contexto e planejamento
	6.2.2 Atividades realizadas
	6.2.3 Resultados da fase inicial

	6.3 Fase principal: implementação das funcionalidades essenciais
	6.3.1 Contexto da retomada
	6.3.2 Narrativa do desenvolvimento
	6.3.3 Entregas e aprendizados

	6.4 Fase avançada: funcionalidades diferenciadas e PWA
	6.4.1 Contexto e motivação
	6.4.2 Narrativa do desenvolvimento
	6.4.3 Entregas e reflexões

	6.5 Fase final: deploy, produção e refinamentos
	6.5.1 Contexto da transição para produção
	6.5.2 Narrativa do desenvolvimento
	6.5.3 Entregas e lições do deploy

	6.6 Considerações Finais do Desenvolvimento
	6.6.1 Estatísticas finais
	6.6.2 Métricas quantitativas do sistema
	6.6.3 Arquitetura e código
	6.6.4 Tecnologias utilizadas
	6.6.5 Funcionalidades implementadas
	6.6.6 Cobertura dos objetivos específicos
	6.6.7 Desafios superados
	6.6.8 Lições aprendidas

	7 Conclusão
	7.1 Trabalhos futuros

	Referências
	A Estruturas das Tabelas do Banco de Dados
	A.1 Tabela Users (Usuários)
	A.2 Tabela Locations (Locais)
	A.3 Tabela Pets
	A.4 Tabela Meals (Refeições)
	A.5 Tabela Reminders (Lembretes)
	A.6 Tabelas de Compartilhamento
	A.7 Tabela Notifications (Notificações)
	A.8 Tabela PushSubscriptions (Assinaturas Push)
	A.9 Tabela AuditLogs (Logs de Auditoria)
	A.10 Resumo dos Relacionamentos

