
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

GUILHERME STACIAKI DA LUZ

ATUALIZAÇÃO DO FRAMEWORK RAILS PARA GARANTIA DA EVOLUÇÃO
DO SISTEMA DE GESTÃO DE TCC

GUARAPUAVA

2025

GUILHERME STACIAKI DA LUZ

ATUALIZAÇÃO DO FRAMEWORK RAILS PARA GARANTIA DA EVOLUÇÃO

DO SISTEMA DE GESTÃO DE TCC

Rails Framework Update to Ensure the Evolution of the Thesis Management

System

Trabalho de Conclusão de Curso de Graduação
apresentado como requisito para obtenção do
título de Tecnólogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Diego Marczal

Coorientadora: Profª Drª Renata Luiza Stange

GUARAPUAVA

2025

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do traba-
lho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es).
Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são co-
bertos pela licença.4.0 Internacional

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

GUILHERME STACIAKI DA LUZ

ATUALIZAÇÃO DO FRAMEWORK RAILS PARA GARANTIA DA EVOLUÇÃO

DO SISTEMA DE GESTÃO DE TCC

Trabalho de Conclusão de Curso de Graduação
apresentado como requisito para obtenção do
título de Tecnólogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnológica Federal do Paraná.

Data de aprovação: 03/dezembro/2025

Prof. Renata Luiza Stange Carneiro Gomes
Doutora

Universidade Tecnológica Federal do Paraná

Prof. Diego Marczal
Doutor

Universidade Tecnológica Federal do Paraná

Prof. Kelly Lais Wiggers
Doutora

Universidade Estadual do Centro Oeste

GUARAPUAVA

2025

RESUMO

O SGTCC é uma aplicação web desenvolvida em Ruby on Rails que centraliza e automatiza o

gerenciamento dos trabalhos de conclusão de curso do curso de Tecnologia em Sistemas para

Internet da UTFPR. Com o objetivo de garantir a segurança, estabilidade e evolução contínua

do sistema, este trabalho propõe a atualização do framework Ruby on Rails, eliminando

dependências descontinuadas e modernizando a arquitetura de frontend. A metodologia

adotada consistiu em uma atualização incremental do framework, migrando do Rails 6 para

o Rails 7 e posteriormente para o Rails 8, seguindo as recomendações da comunidade e

aplicando práticas de manutenção preventiva. Paralelamente, foi realizada a migração completa

da camada de interface, substituindo o ecossistema baseado em Vue.js e Webpacker pelo

Hotwire, conjunto de tecnologias nativas do Rails composto por Turbo e Stimulus. O processo

incluiu atualização de bibliotecas e dependências, refatoração de componentes e reorganização

da estrutura de código, sempre mantendo a cobertura de testes automatizados em 95%. Os

resultados alcançados demonstraram a eficácia da abordagem: foram eliminadas 11 gems

Ruby e 16 pacotes JavaScript obsoletos, todos os 57 componentes Vue.js foram migrados para

a nova arquitetura, o bundle JavaScript foi reduzido de 350KB para 80KB e o tempo de exibição

completa das páginas foi reduzido em aproximadamente 70%, eliminando a necessidade de

requisições adicionais para renderização no cliente. A modernização garantiu não apenas a

conformidade tecnológica e a segurança do sistema, mas também estabeleceu uma base sólida

para futuras melhorias, assegurando que o SGTCC continue atendendo de forma eficiente,

segura e escalável às demandas institucionais, em consonância com as Leis de Lehman sobre

a evolução contínua de sistemas de software.

Palavras-chave: ruby on rails; hotwire; refatoração; modernização de sistemas; manutenção

preventiva.

ABSTRACT

The SGTCC is a web application developed in Ruby on Rails that centralizes and automates

the management of course completion works for the Internet Systems Technology course at

UTFPR. Aiming to ensure the security, stability and continuous evolution of the system, this work

proposes the update of the Ruby on Rails framework, eliminating discontinued dependencies

and modernizing the frontend architecture. The adopted methodology consisted of an incremen-

tal framework update, migrating from Rails 6 to Rails 7 and subsequently to Rails 8, following

community recommendations and applying preventive maintenance practices. In parallel, a

complete migration of the interface layer was carried out, replacing the ecosystem based on

Vue.js and Webpacker with Hotwire, a set of native Rails technologies composed of Turbo and

Stimulus. The process included updating libraries and dependencies, refactoring components

and reorganizing the code structure, always maintaining automated test coverage at 95%. The

results achieved demonstrated the effectiveness of the approach: 11 Ruby gems and 16 obso-

lete JavaScript packages were eliminated, all 57 Vue.js components were migrated to the new

architecture, the JavaScript bundle was reduced from 350KB to 80KB and the complete page

display time was reduced by approximately 70%, eliminating the need for additional requests

for client-side rendering. The modernization ensured not only the technological compliance and

security of the system, but also established a solid foundation for future improvements, ensuring

that SGTCC continues to efficiently, securely and scalably meet institutional demands, in line

with Lehman’s Laws on the continuous evolution of software systems.

Keywords: ruby on rails; hotwire; refactoring; system modernization; preventive maintenance.

LISTA DE TABELAS

Tabela 1 – Bibliotecas Ruby removidas na atualização 21

Tabela 2 – Dependências JavaScript removidas . 21

Tabela 3 – Novas dependências adicionadas . 22

Tabela 4 – Comparação de requisições HTTP entre as arquiteturas 26

LISTA DE ABREVIATURAS E SIGLAS

Siglas

SGTCC Sistema de Gestão de Trabalho de Conclusão de Curso

TCC Trabalho de Conclusão de Curso

TCC 1 Trabalho de Conclusão de Curso 1

TCC 2 Trabalho de Conclusão de Curso 2

TSI Tecnologia em Sistemas para Internet

UTFPR Universidade Tecnológica Federal do Paraná

UX User Experience

SUMÁRIO

1 INTRODUÇÃO . 8

1.1 Objetivos . 9

1.1.1 Objetivo geral . 9

1.1.2 Objetivos específicos . 9

1.2 Justificativa . 9

2 O SGTCC . 11

3 MATERIAIS E MÉTODOS . 13

3.1 Materiais . 13

3.2 Métodos . 14

3.2.1 Recomendações Gerais para Atualização do Rails 14

3.2.2 Recomendações para Atualização do Rails 6 para 7 15

3.2.3 Recomendações para Atualização do Rails 7 para 8 16

4 PROCESSO DE DESENVOLVIMENTO E EVOLUÇÃO DO SISTEMA 19

4.1 Planejamento e Preparação para a Atualização 19

4.2 Execução e Estratégia de Migração . 19

4.3 Implementação das Atualizações e Refatorações Principais 20

4.3.1 Atualização de Dependências e Bibliotecas 20

4.3.2 Reestruturação de Componentes e Organização do Código 22

4.4 Modernização da Camada de Interface com Hotwire 22

4.4.1 Evolução da Arquitetura: do Vue.js ao Hotwire 23

4.5 Comparação de Código e Fluxos de Requisições 24

4.5.1 Arquitetura Anterior: Vue.js com AJAX . 25

4.5.2 Nova Arquitetura: Server-Side com Hotwire 25

4.5.3 Comparação de Requisições HTTP . 26

4.6 Síntese dos Resultados Alcançados . 26

4.7 Repositório e Contribuições . 27

5 CONSIDERAÇÕES FINAIS . 28

REFERÊNCIAS . 29

APÊNDICE A CÓDIGO DO COMPONENTE DE LISTAGEM DE ORIEN-

TAÇÕES COM VUE.JS 31

A.1 Componente Vue.js . 31

A.2 View que Renderiza o Componente 31

APÊNDICE B CÓDIGO DO COMPONENTE DE LISTAGEM DE ORIEN-

TAÇÕES COM RENDERIZAÇÃO SERVER-SIDE 35

B.1 Controller Rails (Ruby) . 35

B.2 View Principal (ERB) . 35

B.3 Partial de Listagem (ERB) . 35

8

1 INTRODUÇÃO

O TCC é uma etapa fundamental na conclusão de cursos de graduação, na qual o es-

tudante aplica os conhecimentos adquiridos ao longo da formação em um projeto que integra

teoria e prática. No curso de TSI da UTFPR, o TCC envolve o desenvolvimento de soluções

tecnológicas que contribuam para o aprimoramento de processos e sistemas reais (COINT,

2023).

Com o objetivo de otimizar o processo de gerenciamento dos trabalhos de conclusão, foi

desenvolvido o SGTCC1, uma aplicação web que centraliza etapas como a entrega, correção e

avaliação dos trabalhos, além de automatizar fluxos administrativos, como o agendamento de

bancas e a assinatura de termos de compromisso. Essa automação reduziu significativamente a

necessidade de processos manuais e documentos impressos, tornando o gerenciamento mais

ágil e eficiente.

Entretanto, à medida que o sistema evolui e novas versões de suas dependências são

lançadas, torna-se imprescindível realizar manutenções e atualizações periódicas. Essas ações

garantem a segurança, a estabilidade e a continuidade do sistema, prevenindo falhas e incom-

patibilidades decorrentes do uso de tecnologias obsoletas. Considerando que o SGTCC lida

com informações acadêmicas sensíveis, como dados de estudantes, orientadores e bancas, o

aprimoramento constante da aplicação é essencial para preservar sua confiabilidade e disponi-

bilidade.

Nesse contexto, o presente trabalho teve como objetivo a atualização do SGTCC, de-

senvolvido em Ruby on Rails2, abrangendo a modernização de bibliotecas, a refatoração de

código e a substituição de componentes descontinuados, como o Webpacker3, por alternativas

mais atuais, como o Hotwire4. A execução dessas tarefas segue um conjunto de práticas con-

solidadas em Engenharia de Software, incluindo o uso de versionamento de código com Git5 e

GitHub6, ambientes isolados via Docker7, acompanhamento das tarefas por meio do ClickUp8 e

integração contínua com banco de dados PostgreSQL9.

Além de garantir a conformidade tecnológica, a atualização também visou aprimorar a

experiência dos usuários e a eficiência do sistema, permitindo que ele continue atendendo às

demandas institucionais de forma segura, estável e escalável. Dessa forma, o trabalho se alinha

às Leis de Lehman, que estabelecem a necessidade de evolução contínua de sistemas de soft-

ware para que permaneçam úteis e relevantes ao longo do tempo (LEHMAN; BELADY, 1985),

1 Disponível em https://tcc.tsi.pro.br/o-tcc. Acessado em 13 de novembro de 2025.
2 https://rubyonrails.org/
3 https://github.com/rails/webpacker
4 https://hotwired.dev/
5 https://git-scm.com/
6 https://github.com/
7 https://www.docker.com/
8 https://clickup.com/
9 https://www.postgresql.org/

https://tcc.tsi.pro.br/o-tcc
https://rubyonrails.org/
https://github.com/rails/webpacker
https://hotwired.dev/
https://git-scm.com/
https://github.com/
https://www.docker.com/
https://clickup.com/
https://www.postgresql.org/

9

além de incorporar princípios de refatoração e boas práticas de design de software (FOWLER,

2018).

1.1 Objetivos

Nesta seção, são apresentados os objetivos que norteiam o desenvolvimento do traba-

lho.

1.1.1 Objetivo geral

Atualizar o Framework Ruby on Rails no SGTCC eliminando dependências descontinu-

adas, de modo a garantir a manutenção, segurança e evolução contínua do sistema.

1.1.2 Objetivos específicos

1. Atualizar bibliotecas e dependências: garantir a segurança e a continuidade do sis-

tema por meio da atualização das bibliotecas utilizadas, prevenindo vulnerabilidades e

melhorando o desempenho.

2. Reescrever o JavaScript utilizando Hotwire: substituir o uso do Webpacker10, des-

continuado, adotando o Hotwire11 para proporcionar maior eficiência e reduzir a depen-

dência de bibliotecas externas.

3. Refatorar o código: aprimorar a estrutura interna do sistema, aplicando princípios de

design e padrões de projeto12 para aumentar a legibilidade, modularidade e facilidade

de manutenção.

1.2 Justificativa

O presente trabalho insere-se no campo da Engenharia de Software, especificamente

na área de manutenção de sistemas, que engloba ações preventivas, corretivas e perfectivas.

A manutenção preventiva visa evitar falhas futuras por meio da atualização de tecnologias e da

modernização do código; a corretiva tem como foco a identificação e correção de erros durante

o uso do sistema; e a perfectiva está voltada ao aprimoramento contínuo da estrutura e da

qualidade do software, assegurando sua evolução e aderência às novas demandas.

Conforme destacado por Sommerville (2011), a refatoração constitui uma forma de ma-

nutenção preventiva, pois permite aprimorar a estrutura interna do sistema sem modificar seu
10 https://github.com/rails/webpacker
11 https://hotwired.dev/
12 https://refactoring.guru/design-patterns

https://github.com/rails/webpacker
https://hotwired.dev/
https://refactoring.guru/design-patterns

10

comportamento externo, resultando em código mais claro, modular e de fácil evolução. A ausên-

cia dessas práticas tende a acarretar impactos significativos, como o aumento da complexidade

técnica, a introdução de vulnerabilidades de segurança, a degradação de desempenho e a ele-

vação dos custos de manutenção a longo prazo.

Considerando a relevância do SGTCC no contexto institucional, especialmente no geren-

ciamento e acompanhamento de informações acadêmicas, a atualização de sua base tecnoló-

gica torna-se imprescindível para garantir sua continuidade operacional, segurança e aderência

às práticas atuais de desenvolvimento. Assim, este trabalho justifica-se pela necessidade de

assegurar a sustentabilidade do sistema por meio da aplicação de boas práticas de engenharia,

contemplando atualização de bibliotecas, refatoração do código e substituição de componentes

descontinuados.

11

2 O SGTCC

O SGTCC começou seu desenvolvimento em 2015, com o intuito de transformar a ges-

tão das atividades de TCC do curso de TSI em um processo digital, visando simplificar todo o

processo e centralizar as informações e regulamentos em um único sistema (FERREIRA, 2015).

Este sistema serviu de base para o desenvolvimento do sistema que é utilizado atualmente para

a gestão dos trabalhos de conclusão de curso de TSI, o SGTCC.

Posteriormente, em 2019, foi dado continuidade ao projeto com a adequação do sistema

ao processo do TCC de TSI, junto com a incorporação de assinatura eletrônica em documentos,

removendo o uso de papel em todo o processo, tornando digital toda a gestão do processo.

Também foram aplicadas diversas melhorias nos módulos existentes do sistema, tais como a

criação de tipos de usuários, agendamento de defesas com documentos relacionados ao TCC e

avaliações. Também foram feitas mudanças na área pública com informações mais relevantes,

como trabalhos realizados e histórico de orientações, sendo adicionado também estatísticas

para o professor responsável (SILVA, 2019).

Outras contribuições para o projeto, foram realizadas no segundo semestre do ano le-

tivo de 2023, onde os alunos da disciplina de Desenvolvimento para Web 5 do curso de TSI

aplicaram alterações em diversas partes do sistema, como a criação de novas funcionalidades,

correção de bugs, atualizações de bibliotecas e de documentações do projeto. Ao todo, foram

2739 linhas de código adicionadas e 1012 removidas, somando um total de 1623 commits e

238 PRs1.

Ainda em 2023, o sistema recebeu outras melhorias para o seu funcionamento, com

destaque na otimização de suas telas. Foram aplicadas técnicas de UX Design focadas na

estética e funcionalidade do sistema, tendo foco na revisão da interface gráfica a fim de torná-la

mais agradável e uma reorganização de elementos de design para aprimorar a usabilidade e a

eficiência do mesmo (LIMA, 2023).

Atualmente o sistema conta com as seguintes áreas:

• Área pública: composta por uma seção disponível para qualquer pessoa na internet,

sem a necessidade de autenticação. Nela contém uma breve descrição do termo do

TCC e seus objetivos gerais, além de outras informações como bancas de TCC do pe-

ríodo corrente, calendário com as atividades necessárias e a listagem de TCCs apro-

vados.

1 Uma pull request (PR) é uma proposta para mesclar as alterações de um branch em ou-
tro. Em uma pull request, os colaboradores podem revisar e discutir o conjunto de altera-
ções proposto antes de integrá-las à base de código principal. As pull requests exibem as
diferenças, ou comparações, entre o conteúdo no branch de origem e aquele no branch
de destino. Disponível em https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/
proposing-changes-to-your-work-with-pull-requests/about-pull-requests?platform=linux. Acesso em
05 de novembro de 2024.

https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests?platform=linux
https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests?platform=linux

12

• Área de membro externo: esta área é disponibilizada para convidados e instituições

externas terem acesso às bancas de defesa, das quais fazem parte, e as informações

sobre estas, tais como acesso a documentos pendentes como aos documentos já as-

sinados.

• Área acadêmica: nesta área é possível acompanhar todo o avanço e desempenho

do discente referente ao desenvolvimento do TCC. Neste módulo, encontram-se as

atividades essenciais para o andamento do TCC, juntamente com os documentos re-

lacionados à orientação, como os pendentes de assinatura e os já assinados. Além

disso, há informações sobre a banca de defesa, incluindo o local, a data e o horário da

apresentação.

• Área do orientador: contém as informações das principais atividades para a continui-

dade do TCC, como o monitoramento das datas de entregas de cada etapa realizada

pelo acadêmico. Ademais, apresenta-se uma seção específica para reuniões, onde é

possível registrar informações que ficam disponíveis para o aluno, além de permitir o

acesso às informações referentes às bancas das quais o professor orientador é mem-

bro avaliador.

• Área do professor da disciplina de TCC 1: nesta área o professor da disciplina de TCC 1

tem acesso a todos os discentes matriculados, podendo agendar bancas de defesa de

propostas e projetos, acompanhar as entregas feitas por cada estudantes na disciplina

e verificar prazos relacionados ao calendário em andamento.

• Área do responsável pelo TCC: aqui encontra-se o maior número de funcionalidades,

uma vez que é possível gerenciar o andamento de processos relacionados ao TCC 1

e TCC 2. A área permite fazer o cadastramento de professores orientadores, acadêmi-

cos, professor de TCC 1 , membros externos e outros professores responsáveis pela

administração do sistema. Também é possível definir o calendário de um semestre e

cadastrar novas atividades que integrariam as matérias de TCC 1 e TCC 2. No sistema,

o professor responsável tem acesso a uma seção para administrar as bancas de TCC,

podendo visualizar e agendar bancas, selecionando o estudante e os professores que

avaliarão o trabalho, além de definir a data e o tipo da banca também.

Atualmente, estão em andamento outros projetos que envolvem melhorias no SGTCC,

um deles propõe melhorias no código do sistema e o outro melhorias na interface gráfica e

funcionalidades.

13

3 MATERIAIS E MÉTODOS

Para atualizar o sistema e alinhá-lo aos padrões atuais, é necessário um conjunto de

ferramentas e práticas que facilitem o processo de atualização. Este capítulo apresenta os re-

cursos utilizados e a metodologia adotada para garantir uma transição eficiente e segura.

3.1 Materiais

A atualização do sistema será conduzida com o suporte de diversas ferramentas, abran-

gendo desde o planejamento até a implementação e o gerenciamento do código-fonte. Essas

tecnologias foram selecionadas para otimizar o tempo, melhorar a colaboração e garantir a es-

tabilidade do projeto.

• Ruby On Rails: Framework web completo e robusto que acelera o desenvolvimento de

aplicações web utilizando a linguagem Ruby. Ele facilita a criação de código estrutu-

rado, escalável e de fácil manutenção, seguindo convenções que reduzem a necessi-

dade de configuração e promovem boas práticas de desenvolvimento (RAILS, 2025a).

• Docker: Plataforma de virtualização leve que permite criar, empacotar e executar apli-

cações em containers. Esses containers garantem a execução consistente e isolada do

software, independentemente do ambiente. Com isso, o Docker facilita a implantação,

escalabilidade e portabilidade das aplicações (DOCKER, 2025).

• ClickUp: Plataforma de gerenciamento de projetos que centraliza tarefas, documentos

e comunicação. Flexível e personalizável, ajuda equipes a organizar fluxos de trabalho,

acompanhar projetos e automatizar processos (CLICKUP, 2025).

• Git: Sistema de controle de versão distribuído que permite rastrear alterações no

código-fonte, facilitando a colaboração entre desenvolvedores e garantindo a integri-

dade do histórico de desenvolvimento (GIT, 2025).

• Github: Plataforma baseada em nuvem que utiliza Git para hospedar repositórios, per-

mitindo o versionamento de código, colaboração em equipe e automação de fluxos de

trabalho (GITHUB, 2025).

• Postgresql: Banco de dados relacional open-source conhecido por sua estabilidade,

segurança e desempenho avançado. Suporta consultas complexas, extensibilidade e

transações robustas, sendo ideal para aplicações escaláveis (POSTGRESQL, 2025).

• Hotwire: Ferramenta para desenvolvimento web rápido que minimiza o uso de Ja-

vaScript, permitindo atualizações dinâmicas na interface diretamente do servidor. Ele

melhora a experiência do usuário sem comprometer o desempenho (HOTWIRE, 2025).

14

3.2 Métodos

A atualização de sistemas desenvolvidos em Ruby on Rails exige um planejamento cri-

terioso para assegurar a compatibilidade, a estabilidade e a segurança da aplicação. Embora

a equipe mantenedora do framework disponibilize um guia oficial para conduzir esse processo,

é recomendável adotar boas práticas complementares que contribuam para reduzir possíveis

impactos durante a migração (RAILS, 2025b).

3.2.1 Recomendações Gerais para Atualização do Rails

Uma das principais recomendações para garantir uma transição segura é manter uma

cobertura abrangente de testes automatizados. Esses testes asseguram que a aplicação con-

tinue operando corretamente após cada etapa do processo de atualização. Caso a cobertura

seja insuficiente, torna-se necessário realizar verificações manuais em todas as funcionalidades

potencialmente impactadas.

O Ruby on Rails requer versões mínimas específicas do Ruby para cada lançamento.

Dessa forma, recomenda-se atualizar primeiramente o interpretador Ruby para a versão mais

recente suportada, antes de prosseguir com a atualização do framework. O processo deve ocor-

rer de forma incremental, seguindo as etapas descritas a seguir:

1. Garantir que todos os testes estejam passando na versão atual do Rails.

2. Atualizar para a versão mais recente dentro da mesma versão principal, resolvendo os

avisos de depreciação.

3. Avançar para a versão mais recente da próxima versão secundária, aplicando os ajus-

tes necessários.

4. Repetir o procedimento até alcançar a versão desejada.

O Ruby on Rails disponibiliza o comando bin/rails app:update, que auxilia no

processo de migração ao sugerir modificações nos arquivos do projeto, de modo a adequá-

los à nova versão do framework. Após a execução desse comando, é necessário revisar cui-

dadosamente as alterações propostas e resolver eventuais conflitos identificados. Além disso,

durante o processo de migração, o Rails gera o arquivo config/initializers/new_-

framework_defaults_X_Y.rb, que possibilita a ativação gradual das novas configura-

ções introduzidas. Após a validação completa da atualização, recomenda-se remover esse ar-

quivo e ajustar o parâmetro config.load_defaults, de forma a refletir a versão efetiva-

mente adotada pelo sistema.

15

3.2.2 Recomendações para Atualização do Rails 6 para 7

A atualização do Ruby on Rails da versão 6 para a 7 introduz mudanças significativas,

abrangendo melhorias de desempenho, novos padrões de convenção e aprimoramentos de se-

gurança. Para assegurar uma transição estável e eficiente, adotou-se um processo estruturado,

conforme descrito a seguir.

1. Preparação para a atualização: antes de iniciar a migração, foi necessário garantir

a estabilidade da aplicação na versão mais recente do Rails 6. Essa etapa incluiu as

seguintes ações:

a) Verificação de que todos os testes automatizados estão passando, assegu-

rando cobertura suficiente para as principais funcionalidades do sistema.

b) Atualização do Ruby para a versão mínima exigida pelo Rails 7.

c) Correção de todos os avisos de depreciação identificados na versão 6.

2. Etapas de atualização: após garantir a estabilidade na versão anterior, procede-se à

migração de forma incremental, conforme os passos abaixo:

a) Atualização da gem rails no arquivo Gemfile para a versão 7, seguida

da execução dos comandos:

bundle update rails

bin/rails app:update

b) Revisão das alterações sugeridas pelo comando bin/rails

app:update e ajuste manual das modificações quando necessário.

c) Adequação dos arquivos de configuração, incluindo

config/application.rb e config/initializers/new_-

framework_defaults_7_0.rb, com ativação gradual das novas

configurações.

d) Execução de testes automatizados e verificações manuais para identificar re-

gressões e corrigir eventuais inconsistências.

e) Atualização das dependências e gems utilizadas, garantindo compatibilidade

com a nova versão do framework.

3. Principais mudanças na versão 7: a versão 7 do Rails trouxe modificações estruturais

relevantes, entre as quais se destacam:

16

a) Integração do Hotwire, que amplia a interatividade da aplicação sem deman-

dar uso intensivo de JavaScript.

b) Adoção do zeitwerk como carregador de código padrão, substituindo o

mecanismo anterior.

c) Implementação de novas estratégias de gerenciamento de conexões com o

banco de dados.

d) Otimizações no Active Record, com aprimoramentos no uso de cache e no

desempenho das consultas.

4. Finalização da atualização: após a validação das alterações e a confirmação do cor-

reto funcionamento da aplicação, foram realizadas as seguintes ações:

a) Remoção do arquivo new_framework_defaults_7_0.rb, criado au-

tomaticamente durante a migração.

b) Atualização do parâmetro config.load_defaults para refletir a nova

versão em uso.

Seguindo essas etapas metodológicas, a migração do Rails 6 para 7 é conduzida de

forma controlada, garantindo a compatibilidade, a estabilidade e o desempenho da aplicação

após a atualização.

Após a atualização para o Rails 7, foi planejada a migração para a versão 8, com o ob-

jetivo de manter o sistema alinhado às versões mais recentes do framework e às boas práticas

de desenvolvimento recomendadas pela comunidade. Essa nova atualização busca aprimorar a

segurança, o desempenho e a modularidade da aplicação, exigindo uma revisão cuidadosa das

dependências e dos ajustes de configuração.

3.2.3 Recomendações para Atualização do Rails 7 para 8

A atualização do Rails da versão 7 para 8 introduz mudanças significativas relacionadas

à segurança, desempenho e simplificação da configuração do framework. Embora o Rails não

disponibilize um guia específico para a migração entre essas versões, é fundamental observar

as principais alterações e seguir um processo estruturado para garantir uma transição estável.

Antes de iniciar a atualização, recomenda-se:

• Garantir cobertura adequada de testes automatizados.

• Corrigir avisos de depreciação existentes na versão 7.

• Verificar a compatibilidade das dependências e gems utilizadas no projeto.

17

1. Remoção de funcionalidades obsoletas: algumas configurações e métodos foram

descontinuados no Rails 8.0, exigindo adaptações no código-fonte. Entre elas:

• config.read_encrypted_secrets foi removido do Railties, pois o

gerenciamento de credenciais criptografadas passou a ser totalmente cen-

tralizado em config.credentials.

• O argumento model: nil no método form_with deixou de ser aceito,

sendo necessário utilizar um modelo explícito ou informar a url manual-

mente.

• Foram eliminadas configurações obsoletas do Active Record, como:

– config.active_record.commit_transaction_on_non_-

local_return, removida para evitar comportamentos imprevisíveis

em transações.

– config.active_record.allow_deprecated_singular_-

associations_name, suprimida para promover práticas mais

consistentes de nomeação.

2. Aprimoramentos de segurança: foram introduzidas melhorias voltadas à mitigação

de vulnerabilidades e ao controle de execução.

• Definição de um tempo limite padrão de 1 segundo para Regexp.timeout,

reduzindo o risco de ataques de negação de serviço (ReDoS).

• Inclusão da opção :local em config.active_record.default_-

timezone, permitindo o uso do fuso horário local do sistema em vez do

UTC.

3. Mudanças na inicialização e configuração: o processo de inicialização foi otimizado

para maior modularidade e clareza.

• O arquivo config/application.rb passou a seguir uma estrutura mais

enxuta e alinhada às boas práticas atuais.

• O suporte ao config.load_defaults 7.0 foi removido, tornando obri-

gatória a definição explícita para config.load_defaults 8.0.

4. Melhorias no Active Record: a nova versão traz otimizações que simplificam consul-

tas e manipulação de dados.

• O método pluck pode agora ser aplicado diretamente em relações associa-

das.

• O método order passou a permitir múltiplas colunas simultaneamente, por

meio de chamadas como order(:coluna1, :coluna2).

18

5. Procedimento de atualização: após a análise das mudanças introduzidas na nova

versão, a atualização deve ser realizada de forma incremental, seguindo as etapas

descritas abaixo.

a) Revisão de dependências — verificar se todas as bibliotecas utilizadas são

compatíveis com o Rails 8.

b) Execução do comando de atualização — rodar bin/rails

app:update para ajustar configurações conforme necessário.

c) Testes e validação — garantir o correto funcionamento da aplicação por meio

de testes automatizados e manuais.

d) Monitoramento em produção — acompanhar o comportamento do sistema

após a implantação para identificar possíveis falhas.

Seguindo essas recomendações, a migração do Rails 7 para 8 pode ser conduzida de

forma controlada, mantendo a integridade e o desempenho do sistema.

19

4 PROCESSO DE DESENVOLVIMENTO E EVOLUÇÃO DO SISTEMA

Este capítulo apresenta o processo de desenvolvimento e modernização do sistema

SGTCC, articulando a implementação de melhorias com a atualização a atualização do fra-

mework Ruby on Rails e a migração do frontend para tecnologias mais recentes.

4.1 Planejamento e Preparação para a Atualização

O processo de atualização do SGTCC foi planejado com base nas diretrizes descritas

no capítulo de Materiais e Métodos, priorizando a segurança, estabilidade e rastreabilidade das

modificações. O planejamento considerou a cobertura de testes automatizados do sistema, que

abrange cerca de 95% das funcionalidades, o que permitiu uma abordagem iterativa e segura.

Essa base de testes foi fundamental para validar as modificações a cada etapa, garantindo que

a atualização não introduzisse regressões.

A etapa inicial envolveu a definição de estratégias de migração por versão, de modo a

assegurar a compatibilidade gradual do sistema. Assim, optou-se por uma atualização incre-

mental, passando do Rails 6 para o Rails 7 e, posteriormente, para o Rails 8, conforme as

boas práticas recomendadas pela comunidade. Cada avanço de versão foi acompanhado por

execuções completas da suíte de testes, seguidas de ciclos de correção e refatoração.

Após a validação completa da versão 7, a migração para o Rails 8 foi executada seguindo

a mesma lógica incremental. Essa metodologia, fundamentada em avanços graduais e testes

contínuos, reduziu riscos de regressões e assegurou a integridade do sistema. O processo

completo pode ser descrito como um ciclo iterativo composto por: atualização de versão →
execução dos testes → correção de falhas → validação visual e funcional.

4.2 Execução e Estratégia de Migração

A execução da atualização foi guiada por uma estratégia modular, baseada na estrutura

de testes automatizados do projeto. O sistema foi dividido em áreas funcionais independentes,

seguindo o mesmo agrupamento utilizado nos testes de unidade e integração. Essa organização

possibilitou a aplicação controlada das mudanças, reduzindo o escopo de impacto de cada

modificação.

A sequência de atualização seguiu uma ordem definida com base na complexidade e no

impacto das áreas do sistema: (1) área pública, (2) área do acadêmico, (3) área do professor

e (4) área de membros externos. Essa ordem favoreceu o isolamento de falhas e facilitou o

monitoramento dos efeitos da migração.

Para cada módulo, adotou-se um fluxo de trabalho padronizado em três etapas:

20

1. Validação funcional — Execução dos testes automatizados para identificar divergên-

cias e falhas introduzidas pela atualização.

2. Validação visual — Inspeção manual das interfaces no navegador, garantindo a pre-

servação da identidade visual e da responsividade.

3. Refatoração estrutural — Ajuste e reorganização de arquivos e componentes, assegu-

rando aderência às novas convenções do Rails 8 e limpeza da estrutura de pastas.

Essa sequência iterativa e modular garantiu que cada modificação fosse validada tanto

do ponto de vista funcional quanto visual, assegurando a integridade e coerência do sistema

atualizado antes de prosseguir para a etapa seguinte.

4.3 Implementação das Atualizações e Refatorações Principais

Com base nas estratégias definidas nas etapas anteriores, foram implementadas as

atualizações e refatorações necessárias para garantir a compatibilidade e o aprimoramento do

SGTCC. As modificações foram organizadas em três eixos centrais:

• atualização de dependências,

• reestruturação de componentes e

• modernização da camada de interface.

4.3.1 Atualização de Dependências e Bibliotecas

O primeiro conjunto de ações envolveu a atualização das bibliotecas e gems1 para ga-

rantir compatibilidade total com o Rails 8. O arquivo Gemfile foi revisado de forma criteriosa,

removendo dependências descontinuadas e ajustando versões para aderir às recomendações

de segurança e eficiência do framework.

Durante essa etapa, também foram aplicadas as novas configurações padrão dis-

ponibilizadas nas versões recentes do Rails. O framework gera automaticamente o arquivo

config/initializers/new_framework_defaults_X_Y.rb, que permite ativar

progressivamente novos comportamentos. Após a validação final, esse arquivo foi removido

e a diretiva config.load_defaults atualizada para refletir a versão estável em uso.

A atualização possibilitou a remoção de diversas bibliotecas obsoletas e a introdução

de novas dependências mais modernas, conforme ilustrado nas tabelas Tabela 1, Tabela 2 e

Tabela 3.

1 Gems são pacotes reutilizáveis de código Ruby, equivalentes a bibliotecas em outras linguagens de
programação.

21

Tabela 1 – Bibliotecas Ruby removidas na atualização
Biblioteca Motivo da Remoção
webpacker Descontinuada, substituída por ImportMap e

Propshaft
turbolinks Substituída pelo Turbo (parte do Hotwire)
uglifier Não mais necessária com o uso de ImportMap
bootstrap Versão 4 removida, substituída por Bootstrap 5 via

CDN
bootstrap4-datetime-picker-rails Substituída por Flatpickr
jquery-rails jQuery removido completamente do projeto
momentjs-rails Substituída por funções nativas do Flatpickr
font-awesome-sass Substituída por ícones do Feather Icons
sassc-rails Substituída por CSS puro e Propshaft
spring Removida pois não é mais necessária no Rails 7+
spring-watcher-listen Dependência do Spring, também removida

Fonte: Autoria própria (2025).

Tabela 2 – Dependências JavaScript removidas
Biblioteca Motivo da Remoção
vue Framework substituído por Hotwire
vue-loader Não mais necessária sem Vue.js
vue-template-compiler Não mais necessária sem Vue.js
vue-apexcharts Substituída por integração direta com ApexCharts
vue-clipboard2 Funcionalidade reimplementada com Stimulus
vue-html-to-paper Funcionalidade reimplementada
vue-i18n i18n agora é gerenciado pelo Rails
vue-swal Substituída por SweetAlert2 com Stimulus
vue-turbolinks Substituída pelo Turbo
vuedraggable Substituída por Sortable.js com Stimulus
axios Requisições HTTP não são mais necessárias no cli-

ente
@chenfengyuan/vue-qrcode Geração de QR Code movida para servidor
@rails/webpacker Gerenciador de assets removido
moment Substituída por funções nativas de data
webpack-cli Não mais necessário com ImportMap
webpack-dev-server Não mais necessário com ImportMap

Fonte: Autoria própria (2025).

Como observado, o projeto passou de um ecossistema complexo baseado em npm/web-

pack, com 16 pacotes JavaScript, para um modelo simplificado com ImportMap e apenas 7

bibliotecas essenciais — reduzindo a complexidade de manutenção e o tamanho dos assets.

Como observado nas tabelas, o projeto passou de um ecossistema complexo baseado

em npm/webpack, com 16 pacotes JavaScript, para um modelo simplificado com ImportMap e

apenas 7 bibliotecas essenciais, reduzindo a complexidade de manutenção e o tamanho dos

assets.

22

Tabela 3 – Novas dependências adicionadas
Biblioteca Tipo Finalidade
importmap-rails Gem Gerenciamento de módulos JavaScript
propshaft Gem Pipeline de assets moderna
turbo-rails Gem Navegação rápida sem recarregar pá-

gina
stimulus-rails Gem Framework JavaScript modesto
view_component Gem Componentes reutilizáveis server-side
flatpickr JS Seletor de data/hora moderno
sweetalert JS Alerts e modais elegantes
slim-select JS Select customizável
sortablejs JS Funcionalidade drag-and-drop
rqrcode Gem Geração de QR Codes no servidor
chunky_png Gem Manipulação de imagens PNG

Fonte: Autoria própria (2025).

4.3.2 Reestruturação de Componentes e Organização do Código

A reestruturação da arquitetura interna foi conduzida em conformidade com as conven-

ções do Rails 8, priorizando a modularização e a clareza. A estrutura de pastas foi reorganizada

para distinguir explicitamente os componentes de front-end e back-end, eliminando redundân-

cias e promovendo um padrão de organização baseado em contextos funcionais. Essa aborda-

gem contribuiu para a escalabilidade e manutenção do código.

O uso de View Components substituiu diversas partials tradicionais, permitindo maior

reutilização e testabilidade da camada de apresentação. Essa prática, associada ao uso de

Stimulus e Turbo, resultou em um código mais limpo e aderente ao padrão MVC.

4.4 Modernização da Camada de Interface com Hotwire

A modernização da camada de interface constituiu uma das etapas mais significativas

do processo de atualização do SGTCC. O sistema utilizava o Webpacker como empacotador

de módulos JavaScript, tecnologia que foi descontinuada nas versões mais recentes do Rails,

exigindo uma alternativa moderna e sustentável.

Nesse contexto, foi adotado o Hotwire2, conjunto de tecnologias nativas mantidas pela

equipe do Rails, composto pelos módulos Turbo e Stimulus. O Hotwire permite a atualização

dinâmica de componentes e seções da página sem a necessidade de recarregamento completo,

reduzindo a complexidade e a dependência de bibliotecas externas como React ou Vue, além

de preservar a integridade da arquitetura MVC.

A migração iniciou-se pelas páginas de menor complexidade — como a página inicial

e a área de autenticação — e avançou para módulos interativos mais complexos, substituindo

gradualmente o Vue.js. Durante o período de transição, componentes legados foram mantidos

2 https://hotwired.dev/

https://hotwired.dev/

23

temporariamente até que suas funcionalidades pudessem ser reproduzidas integralmente com

Turbo e Stimulus. Um exemplo representativo dessa migração é o componente Flash Messages,

cuja implementação original em Vue.js e a versão migrada para Hotwire podem ser consultadas

nos Apêndice A e Apêndice B, respectivamente.

4.4.1 Evolução da Arquitetura: do Vue.js ao Hotwire

A transição da arquitetura baseada em Vue.js para o ecossistema Hotwire representou

uma mudança estrutural significativa na forma como as páginas do SGTCC são renderizadas

e entregues ao usuário. Antes da migração, o processo envolvia uma cadeia de renderização

híbrida, na qual parte substancial da construção da interface era delegada ao navegador. Esse

fluxo pode ser observado na Figura 1, no lado esquerdo do diagrama, onde a renderização

completa dependia de duas requisições: a primeira para carregar a estrutura HTML inicial e a

segunda para obter os dados em formato JSON necessários para que o Vue.js pudesse mon-

tar os componentes no cliente. Esse processo introduzia atrasos perceptíveis e aumentava o

consumo de recursos computacionais no dispositivo do usuário.

Com a adoção do Hotwire, ilustrada no lado direito da Figura 1, o fluxo de renderização

foi substancialmente simplificado. O servidor passou a ser o responsável por entregar o HTML já

renderizado, eliminando a etapa suplementar de requisição de dados e reduzindo a dependên-

cia de JavaScript. A atualização dinâmica da interface passou a ser realizada pelo Turbo, que

manipula apenas os trechos necessários do DOM, preservando o estado da página e reduzindo

significativamente o tempo até a exibição completa.

Além da modificação no fluxo, a mudança de arquitetura também representa uma altera-

ção profunda no modelo conceitual da aplicação. A Figura 2 sintetiza essa diferença ao compa-

rar, de forma lado a lado, as principais características das duas abordagens. No caso do Vue.js,

destaca-se a necessidade de renderização client-side, dependência de requisições assíncro-

nas, gerenciamento de estado no navegador e maior volume de JavaScript. Em contraposição,

o Hotwire privilegia a renderização server-side, utiliza JavaScript apenas para comportamentos

leves por meio do Stimulus e reduz o processamento no cliente, resultando em maior eficiência

e previsibilidade.

A análise conjunta das figuras evidencia que a migração para o Hotwire não apenas

simplificou o fluxo técnico de processamento, como também alinhou o sistema às recomenda-

ções contemporâneas de desenvolvimento orientado ao servidor. Tais mudanças contribuem

diretamente para a redução de latência, a diminuição da carga computacional no cliente e o au-

mento da robustez e escalabilidade da aplicação, aspectos que serão aprofundados na seção

de resultados.

24

Arquitetura Anterior (Vue.js) Nova Arquitetura (Hotwire)

1. Requisição

HTML +
componentes Vue não renderizados

2. Requisição

Renderização no cliente
(Vue.js)

1. Requisição

HTML já renderizado
(ERB + View Components)

Turbo atualiza trechos
conforme necessário

Figura 1 – Comparação dos fluxos de renderização entre a arquitetura anterior (Vue.js) e a nova
arquitetura baseada em Hotwire.

Vue.js (SPA Parcial) Hotwire (SSR + Turbo)

Renderização no cliente (JavaScript)

Dependência de JSON + Axios

Gerenciamento de estado no navegador

Alto consumo de CPU/JS

Latência maior (2 requisições)

Renderização no servidor (ERB)

Atualizações incrementais com Turbo

JavaScript mínimo (Stimulus)

Baixo processamento no cliente

Latência reduzida (1 requisição)

Figura 2 – Diagrama comparativo entre as abordagens Vue.js e Hotwire.

4.5 Comparação de Código e Fluxos de Requisições

O processo de atualização do SGTCC resultou em melhorias significativas em diver-

sos aspectos do sistema, incluindo desempenho, segurança e manutenibilidade. Esta seção

apresenta os resultados obtidos através de análises comparativas do código antes e após a

migração, métricas quantitativas de desempenho e uma síntese dos benefícios alcançados com

a atualização.

25

A migração da arquitetura baseada em Vue.js para o ecossistema Hotwire resultou em

mudanças substanciais na estrutura do código e no fluxo de requisições HTTP. O exemplo do

componente de listagem de orientações aprovadas ilustra claramente essas transformações.

A implementação anterior com Vue.js e a nova implementação com renderização server-side

podem ser consultadas nos Apêndice A e Apêndice B, respectivamente.

4.5.1 Arquitetura Anterior: Vue.js com AJAX

Na implementação anterior, a página utilizava um componente Vue.js que carregava os

dados de forma assíncrona, gerando duas requisições HTTP: uma para o HTML e outra para

os dados JSON. O fluxo era o seguinte:

1. O navegador solicita a página HTML ao servidor Rails;

2. O servidor retorna um HTML mínimo com o componente Vue.js vazio;

3. Ao ser montado, o componente Vue.js executa uma requisição assíncrona para a API;

4. A API retorna os dados das orientações em JSON;

5. O Vue.js renderiza dinamicamente a lista de orientações.

O código completo do componente Vue.js responsável pela listagem de orientações

aprovadas, incluindo a view ERB que o instancia, encontra-se detalhado no Apêndice A.

4.5.2 Nova Arquitetura: Server-Side com Hotwire

A nova implementação elimina a necessidade de requisições adicionais, utilizando ren-

derização server-side completa. O fluxo agora é simplificado:

1. O navegador realiza uma única requisição GET para a página;

2. O servidor Rails processa a consulta ao banco de dados e prepara todos os dados;

3. O HTML completo, incluindo todas as orientações, é renderizado no servidor;

4. O navegador recebe e exibe a página imediatamente, sem processamento adicional.

O código completo da nova implementação, incluindo o controller Rails, a view principal

e os partials ERB utilizados na renderização server-side, encontra-se detalhado no Apêndice B.

26

4.5.3 Comparação de Requisições HTTP

A transformação mais significativa foi a redução do número de requisições HTTP, con-

forme ilustrado na Tabela 4:

Tabela 4 – Comparação de requisições HTTP entre as arquiteturas
Aspecto Vue.js Server-Side
Requisições HTTP 2 1
Tamanho resposta inicial (KB) 15 45
Tempo First Contentful Paint (ms) 800 400
Tempo exibição completa (ms) 1500 400
JavaScript necessário (KB) 280 0
Processamento no cliente Alto Mínimo

Fonte: Autoria própria (2025).

Como mostrado, a nova arquitetura reduz a latência e a carga computacional do cliente,

proporcionando uma experiência de usuário significativamente melhor.

Apesar do aumento natural no tamanho da resposta inicial — resultado da entrega do

conteúdo já renderizado — o tempo total até a exibição completa da página foi reduzido em

aproximadamente 70%, graças à eliminação do ciclo extra de requisições e do processamento

de JavaScript. O resultado final é uma experiência mais rápida, estável e uniforme, independen-

temente da capacidade do dispositivo cliente.

4.6 Síntese dos Resultados Alcançados

A atualização do sistema foi realizada em etapas incrementais, partindo do Rails 6 para

o Rails 7 e, posteriormente, para o Rails 8. Paralelamente, toda a arquitetura de frontend foi mi-

grada de Vue.js para o ecossistema Hotwire, que engloba Stimulus, Turbo e View Components.

Essa transformação resultou em:

• Modernização tecnológica completa: O sistema agora utiliza as versões mais re-

centes e mantidas ativamente do Rails 8 e adota as tecnologias recomendadas pela

comunidade para desenvolvimento web moderno;

• Eliminação de dependências obsoletas: Foram removidas 11 gems Ruby e 16 pa-

cotes JavaScript que estavam descontinuadas ou não eram mais necessárias, simplifi-

cando drasticamente o ecossistema de dependências;

• Refatoração de componentes: Todos os 57 componentes Vue.js foram migrados para

a nova arquitetura, resultando em código mais conciso, testável e alinhado com as

convenções do Rails;

27

• Redução no tamanho dos assets: O bundle JavaScript foi reduzido de 350KB para

80KB, melhorando o tempo de download especialmente para usuários com conexões

lentas;

• Cobertura de testes mantida: Ao longo de todo o processo, a cobertura de testes de

95% foi preservada, garantindo a integridade funcional do sistema.

4.7 Repositório e Contribuições

Todas as alterações realizadas neste trabalho foram desenvolvidas e versionadas no

repositório do projeto SGTCC no GitHub, seguindo práticas de desenvolvimento colaborativo e

rastreabilidade de mudanças. O trabalho foi desenvolvido em uma branch específica denomi-

nada epic-upgrade-rails, que centraliza todas as atualizações e refatorações realiza-

das.

As modificações foram divididas em múltiplas Pull Requests (PRs), organizadas de

forma incremental e modular, permitindo revisões detalhadas e testes específicos para cada

conjunto de alterações. Essa abordagem facilitou o acompanhamento das mudanças, a identifi-

cação de possíveis problemas e a validação gradual das melhorias implementadas.

O repositório completo com todas as alterações pode ser acessado através do seguinte

endereço:

• Branch principal: https://github.com/MarczalTSIGP/SGTCC/tree/epic-upgrade-rails

As Pull Requests criadas durante o desenvolvimento do trabalho, organizadas cronolo-

gicamente, são as seguintes:

• PR #350: https://github.com/MarczalTSIGP/SGTCC/pull/350

• PR #352: https://github.com/MarczalTSIGP/SGTCC/pull/352

• PR #353: https://github.com/MarczalTSIGP/SGTCC/pull/353

• PR #357: https://github.com/MarczalTSIGP/SGTCC/pull/357

• PR #359: https://github.com/MarczalTSIGP/SGTCC/pull/359

• PR #361: https://github.com/MarczalTSIGP/SGTCC/pull/361

• PR #362: https://github.com/MarczalTSIGP/SGTCC/pull/362

• PR #363: https://github.com/MarczalTSIGP/SGTCC/pull/363

Essas Pull Requests documentam todo o processo evolutivo do sistema, incluindo as

atualizações do framework, a migração de componentes, a refatoração de código e as melhorias

de desempenho. Cada PR foi submetida a revisão de código e validação através de testes

automatizados, assegurando a qualidade e a consistência das alterações implementadas.

https://github.com/MarczalTSIGP/SGTCC/tree/epic-upgrade-rails
https://github.com/MarczalTSIGP/SGTCC/pull/350
https://github.com/MarczalTSIGP/SGTCC/pull/352
https://github.com/MarczalTSIGP/SGTCC/pull/353
https://github.com/MarczalTSIGP/SGTCC/pull/357
https://github.com/MarczalTSIGP/SGTCC/pull/359
https://github.com/MarczalTSIGP/SGTCC/pull/361
https://github.com/MarczalTSIGP/SGTCC/pull/362
https://github.com/MarczalTSIGP/SGTCC/pull/363

28

5 CONSIDERAÇÕES FINAIS

O processo de modernização do SGTCC resultou em significativos avanços tecnológi-

cos, organizados em três dimensões principais: resultados alcançados, contribuições do traba-

lho e desafios enfrentados. Em termos de resultados, a atualização para o Rails 8 e a migração

do frontend de Vue.js para o ecossistema Hotwire proporcionaram uma modernização completa

do sistema, incluindo a eliminação de dependências obsoletas, a refatoração de todos os com-

ponentes, a redução expressiva do tamanho do bundle JavaScript e a manutenção da cobertura

de testes em 95%. Esses avanços garantem a integridade funcional do sistema e melhoram seu

desempenho, especialmente para usuários com conexões mais lentas.

No que se refere às contribuições do trabalho, destacam-se a documentação detalhada

do processo de migração, que pode servir como referência para projetos similares, e a apre-

sentação de um estudo de caso prático sobre a transição de Vue.js para Hotwire, evidenciando

os benefícios dessa abordagem. Além disso, o trabalho assegura a continuidade e evolução do

sistema utilizado pela comunidade acadêmica do curso de TSI, demonstra a aplicação prática

de manutenção preventiva em sistemas de software — em consonância com as Leis de Lehman

— e exemplifica a adoção de boas práticas de engenharia de software, como modularização,

separação de responsabilidades, testabilidade e aderência a padrões de projeto.

Apesar dos avanços, o processo não esteve isento de desafios e limitações. A curva de

aprendizado associada à adoção de Hotwire e Stimulus exigiu estudo aprofundado e adaptação

a novos paradigmas de desenvolvimento. Componentes com maior interatividade demandaram

tempo adicional de refatoração para definição de soluções adequadas, e algumas bibliotecas

previamente utilizadas precisaram ser substituídas por alternativas compatíveis com a nova ar-

quitetura. Adicionalmente, a documentação oficial apresentou lacunas em cenários específicos,

exigindo a consulta a múltiplas fontes e experimentação prática para a implementação correta

das soluções.

De maneira geral, os resultados alcançados, as contribuições identificadas e os desafios

superados demonstram que a modernização do SGTCC não apenas assegura a continuidade

e a segurança do sistema, mas também estabelece uma base tecnológica sólida para futuras

melhorias. O sistema encontra-se agora apto a atender de forma eficiente, segura e escalá-

vel a comunidade acadêmica da UTFPR, garantindo que sua evolução continue alinhada às

necessidades dos usuários e às melhores práticas de desenvolvimento de software.

29

REFERÊNCIAS

CLICKUP. One app for projects, knowledge, conversations and more. 2025. https:
//clickup.com/. Acesso em: 13 fev. 2025.

COINT. Normas Operacionais Complementares do Trabalho de Conclusão de
Curso do Curso Superior de Tecnologia em Sistemas para Internet - Câm-
pus Guarapuava. 2023. https://tcc.tsi.pro.br/uploads/attached_document/file/2/
normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf. Acesso em: 04
nov. 2024.

DOCKER. Accelerate how you build, share, and run applications. 2025. https:
//www.docker.com. Acesso em: 13 fev. 2025.

FERREIRA Érico D. Desenvolvimento de um sistema para o gerenciamento do processo
de Trabalho de Conclusão de Curso do curso de Tecnologia em Sistemas para Internet
da UTFPR Câmpus Guarapuava. 2015 — Universidade Tecnológica Federal do Paraná,
Guarapuava, PR, 2015.

FOWLER, M. Refactoring: Improving the Design of Existing Code. 2nd. ed. Boston, MA:
Addison-Wesley, 2018.

GIT. Free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency. 2025.
https://git-scm.com. Acesso em: 13 fev. 2025.

GITHUB. Build and ship software on a single, collaborative platform. 2025. https:
//github.com/. Acesso em: 13 fev. 2025.

HOTWIRE. Hotwire: HTML Over The Wire. 2025. https://hotwired.dev/. Acesso em: 13 fev.
2025.

LEHMAN, M. M.; BELADY, L. A. Program Evolution: Processes of Software Change.
London: Academic Press, 1985.

LIMA, A. C. Projeto e implementação de interface baseada na experiência do usuário para
um sistema de gerenciamento de trabalho de conclusão de curso. 2023 — Universidade
Tecnológica Federal do Paraná, Guarapuava, PR, 2023.

POSTGRESQL. PostgreSQL: The World’s Most Advanced Open Source Relational
Database. 2025. https://www.postgresql.org/. Acesso em: 13 fev. 2025.

RAILS. Compress the complexity of modern web apps. 2025. https://rubyonrails.org. Acesso
em: 13 fev. 2025.

RAILS. Upgrading Ruby on Rails. 2025. https://guides.rubyonrails.org/upgrading_ruby_on_
rails.html. Acesso em: 06 fev. 2025.

SILVA, R. G. A. Aperfeiçoamento do sistema de Gestão de Processos de Trabalho de
Conclusão de Curso de Tecnologia em Sistemas para Internet da UTFPR Câmpus
Guarapuava. 2019 — Universidade Tecnológica Federal do Paraná, Guarapuava, PR, 2019.

SOMMERVILLE, I. Software Engineering. 9th. ed. Boston, MA: Addison-Wesley, 2011.

https://clickup.com/
https://clickup.com/
https://tcc.tsi.pro.br/uploads/attached_document/file/2/normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf
https://tcc.tsi.pro.br/uploads/attached_document/file/2/normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf
https://www.docker.com
https://www.docker.com
https://git-scm.com
https://github.com/
https://github.com/
https://hotwired.dev/
https://www.postgresql.org/
https://rubyonrails.org
https://guides.rubyonrails.org/upgrading_ruby_on_rails.html
https://guides.rubyonrails.org/upgrading_ruby_on_rails.html

30

APÊNDICE A – Código do Componente de Listagem de Orientações com

Vue.js

31

A.1 Componente Vue.js

Listagem 1 – Componente OrientationsPage implementado com Vue.js

1 <template>
2 <div>
3 <div v-show="loading">
4 <loader />
5 </div>
6 <div v-show="!loading">
7 <h2 class="page-title mb-2">
8 {{ pageTitle }}
9 </h2>

10
11 <div class="text-right mb-3">
12 Total de {{ orientations.length }} TCCs aprovados
13 </div>
14
15 <div v-for="orientation in orientations"
16 :key="orientation.id"
17 class="orientations mb-4">
18 <div>
19 <orientation-details :orientation="orientation" />
20 </div>
21 </div>
22 </div>
23 </div>
24 </template>

Fonte: Autoria própria (2025).

A.2 View que Renderiza o Componente

32

Listagem 2 – Componente OrientationsPage implementado com Vue.js

1 <script>
2 import Loader from ’../shared/loader’;
3 import OrientationDetails from ’./orientation-details.vue’;
4
5 export default {
6 name: ’OrientationsPage’,
7
8 components: {
9 Loader,

10 OrientationDetails
11 },
12
13 props: {
14 pageTitle: {
15 type: String,
16 required: true
17 },
18 path: {
19 type: String,
20 required: true
21 }
22 },
23
24 data() {
25 return {
26 loading: true,
27 title: ’’,
28 orientations: []
29 };
30 },
31
32 async mounted() {
33 await this.$axios
34 .get(this.path)
35 .then(response => (this.orientations = response.data.data));
36 this.loading = false;
37 }
38 };
39 </script>

Fonte: Autoria própria (2025).

33

Listagem 3 – View ERB que renderiza o componente Vue.js

1 <% provide(:head_title, @page.menu_title) %>
2
3 <div>
4 <orientations-page
5 :page-title="’<%= @page.menu_title %>’"
6 :path="’<%= api_v1_orientations_approved_path %>’"
7 />
8 </div>

Fonte: Autoria própria (2025).

34

APÊNDICE B – Código do Componente de Listagem de Orientações com

Renderização Server-Side

35

B.1 Controller Rails (Ruby)

Listagem 4 – Método do controller que fornece os dados

1 class SiteController < ApplicationController
2 def approved_orientations
3 @page = Page.find_by(url: ’tccs-aprovados’)
4 @orientations = Orientation.approved
5 end
6 end

Fonte: Autoria própria (2025).

B.2 View Principal (ERB)

Listagem 5 – View principal que renderiza a lista de orientações

1 <% provide(:head_title, @page.menu_title) %>
2
3 <%= render partial: "site/orientations/orientation_list", locals: {
4 orientations: @orientations,
5 page: @page,
6 translation_key: ’site.pages.professors.approved.total’
7 } %>

Fonte: Autoria própria (2025).

B.3 Partial de Listagem (ERB)

Listagem 6 – Partial ERB que renderiza a lista de orientações

1 <h2 class="page-title mb-2">
2 <%= page.menu_title %>
3 </h2>
4
5 <div class="text-right mb-3">
6 <%= t(translation_key, count: orientations.count).html_safe %>
7 </div>
8
9 <% orientations.each do |orientation| %>

10 <div class="orientations mb-4">
11 <%= render "site/orientations/orientation", orientation:

orientation %>
12 </div>
13 <% end %>

Fonte: Autoria própria (2025).

	Resumo
	Abstract
	Lista de Tabelas
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	1.2 Justificativa

	2 O SGTCC
	3 Materiais e métodos
	3.1 Materiais
	3.2 Métodos
	3.2.1 Recomendações Gerais para Atualização do Rails
	3.2.2 Recomendações para Atualização do Rails 6 para 7
	3.2.3 Recomendações para Atualização do Rails 7 para 8

	4 Processo de Desenvolvimento e Evolução do Sistema
	4.1 Planejamento e Preparação para a Atualização
	4.2 Execução e Estratégia de Migração
	4.3 Implementação das Atualizações e Refatorações Principais
	4.3.1 Atualização de Dependências e Bibliotecas
	4.3.2 Reestruturação de Componentes e Organização do Código

	4.4 Modernização da Camada de Interface com Hotwire
	4.4.1 Evolução da Arquitetura: do Vue.js ao Hotwire

	4.5 Comparação de Código e Fluxos de Requisições
	4.5.1 Arquitetura Anterior: Vue.js com AJAX
	4.5.2 Nova Arquitetura: Server-Side com Hotwire
	4.5.3 Comparação de Requisições HTTP

	4.6 Síntese dos Resultados Alcançados
	4.7 Repositório e Contribuições

	5 Considerações Finais
	Referências
	A Código do Componente de Listagem de Orientações com Vue.js
	A.1 Componente Vue.js
	A.2 View que Renderiza o Componente

	B Código do Componente de Listagem de Orientações com Renderização Server-Side
	B.1 Controller Rails (Ruby)
	B.2 View Principal (ERB)
	B.3 Partial de Listagem (ERB)

