UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA

GUILHERME STACIAKI DA LUZ

ATUALIZACAO DO FRAMEWORK RAILS PARA GARANTIA DA EVOLUCAO
DO SISTEMA DE GESTAO DE TCC

GUARAPUAVA
2025

GUILHERME STACIAKI DA LUZ

ATUALIZACAO DO FRAMEWORK RAILS PARA GARANTIA DA EVOLUCAO

DO SISTEMA DE GESTAO DE TCC

Rails Framework Update to Ensure the Evolution of the Thesis Management

(oMol

4.0 Internacional

System

Trabalho de Conclusao de Curso de Graduacgao
apresentado como requisito para obtengédo do
titulo de Tecndlogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnolégica Federal do Parana.

Orientador: Prof. Dr. Diego Marczal

Coorientadora: Prof? Dr?2 Renata Luiza Stange

GUARAPUAVA
2025

Esta licenca permite compartilhamento, remixe, adaptagéo e criagdo a partir do traba-
Iho, mesmo para fins comerciais, desde que sejam atribuidos créditos ao(s) autor(es).
Conteudos elaborados por terceiros, citados e referenciados nesta obra ndo sao co-
bertos pela licencga.

https://creativecommons.org/licenses/by/4.0/deed.pt_BR

GUILHERME STACIAKI DA LUZ

ATUALIZACAO DO FRAMEWORK RAILS PARA GARANTIA DA EVOLUGCAO
DO SISTEMA DE GESTAO DE TCC

Trabalho de Conclusao de Curso de Graduacgao
apresentado como requisito para obtengcao do
titulo de Tecndlogo em Tecnologia em Sistemas
para Internet do Curso Superior de Tecnologia
em Sistemas para Internet da Universidade
Tecnolégica Federal do Parana.

Data de aprovagao: 03/dezembro/2025

Prof. Renata Luiza Stange Carneiro Gomes
Doutora
Universidade Tecnoldgica Federal do Parana

Prof. Diego Marczal
Doutor
Universidade Tecnoldgica Federal do Parana

Prof. Kelly Lais Wiggers
Doutora
Universidade Estadual do Centro Oeste

GUARAPUAVA
2025

RESUMO

O SGTCC é uma aplicacao web desenvolvida em Ruby on Rails que centraliza e automatiza o
gerenciamento dos trabalhos de conclusao de curso do curso de Tecnologia em Sistemas para
Internet da UTFPR. Com o objetivo de garantir a seguranca, estabilidade e evolugdo continua
do sistema, este trabalho propde a atualizagdo do framework Ruby on Rails, eliminando
dependéncias descontinuadas e modernizando a arquitetura de frontend. A metodologia
adotada consistiu em uma atualizagdo incremental do framework, migrando do Rails 6 para
o Rails 7 e posteriormente para o Rails 8, seguindo as recomendac¢des da comunidade e
aplicando praticas de manutencao preventiva. Paralelamente, foi realizada a migragédo completa
da camada de interface, substituindo o ecossistema baseado em Vue.js e Webpacker pelo
Hotwire, conjunto de tecnologias nativas do Rails composto por Turbo e Stimulus. O processo
incluiu atualizacdo de bibliotecas e dependéncias, refatoracao de componentes e reorganizacao
da estrutura de cddigo, sempre mantendo a cobertura de testes automatizados em 95%. Os
resultados alcangados demonstraram a eficacia da abordagem: foram eliminadas 11 gems
Ruby e 16 pacotes JavaScript obsoletos, todos os 57 componentes Vue.js foram migrados para
a nova arquitetura, o bundle JavaScript foi reduzido de 350KB para 80KB e o tempo de exibicao
completa das péginas foi reduzido em aproximadamente 70%, eliminando a necessidade de
requisicoes adicionais para renderizacdo no cliente. A modernizacdo garantiu ndo apenas a
conformidade tecnoldgica e a seguranga do sistema, mas também estabeleceu uma base sélida
para futuras melhorias, assegurando que o SGTCC continue atendendo de forma eficiente,
segura e escalavel as demandas institucionais, em consonancia com as Leis de Lehman sobre

a evolucao continua de sistemas de software.

Palavras-chave: ruby on rails; hotwire; refatoragdo; modernizacao de sistemas; manutengéo

preventiva.

ABSTRACT

The SGTCC is a web application developed in Ruby on Rails that centralizes and automates
the management of course completion works for the Internet Systems Technology course at
UTFPR. Aiming to ensure the security, stability and continuous evolution of the system, this work
proposes the update of the Ruby on Rails framework, eliminating discontinued dependencies
and modernizing the frontend architecture. The adopted methodology consisted of an incremen-
tal framework update, migrating from Rails 6 to Rails 7 and subsequently to Rails 8, following
community recommendations and applying preventive maintenance practices. In parallel, a
complete migration of the interface layer was carried out, replacing the ecosystem based on
Vue.js and Webpacker with Hotwire, a set of native Rails technologies composed of Turbo and
Stimulus. The process included updating libraries and dependencies, refactoring components
and reorganizing the code structure, always maintaining automated test coverage at 95%. The
results achieved demonstrated the effectiveness of the approach: 11 Ruby gems and 16 obso-
lete JavaScript packages were eliminated, all 57 Vue.js components were migrated to the new
architecture, the JavaScript bundle was reduced from 350KB to 80KB and the complete page
display time was reduced by approximately 70%, eliminating the need for additional requests
for client-side rendering. The modernization ensured not only the technological compliance and
security of the system, but also established a solid foundation for future improvements, ensuring
that SGTCC continues to efficiently, securely and scalably meet institutional demands, in line

with Lehman’s Laws on the continuous evolution of software systems.

Keywords: ruby on rails; hotwire; refactoring; system modernization; preventive maintenance.

LISTA DE TABELAS

Tabela 1 — Bibliotecas Ruby removidas na atualizacado 21
Tabela2 — Dependéncias JavaScriptremovidas 21
Tabela 3 — Novas dependéncias adicionadas 22
Tabela 4 — Comparacao de requisicoes HTTP entre as arquiteturas 26

Siglas

SGTCC
TCC
TCC 1
TCC 2
TSI
UTFPR
UXx

LISTA DE ABREVIATURAS E SIGLAS

Sistema de Gestédo de Trabalho de Concluséo de Curso
Trabalho de Concluséo de Curso

Trabalho de Concluséo de Curso 1

Trabalho de Concluséo de Curso 2

Tecnologia em Sistemas para Internet

Universidade Tecnoldgica Federal do Parana

User Experience

1.1
1.1.1
1.1.2
1.2

3.1
3.2
3.2.1
3.2.2
3.2.3

41
4.2
4.3
4.31
4.3.2
4.4
4.4
4.5
4.51
4.5.2
4.5.3
4.6
4.7

SUMARIO

INTRODUCAOD ittt i e e e e e e e e e e e e e e e e
Objetivos e e e e e e e e e e e
Objetivogeral e
Objetivos especificoso
Justificativa e
OSGTCC . . . ittt e e e e e e e e e e e e e e e e e
MATERIAISEMETODOS ottt et e e e e e e

1V = 1= - 1

Recomendacgdes Gerais para Atualizacdodo Rails
Recomendagbes para Atualizagdo do Rails6para7
Recomendacgdes para Atualizagdo do Rails 7para8
PROCESSO DE DESENVOLVIMENTO E EVOLUCAO DO SISTEMA
Planejamento e Preparacao para a Atualizacdo
Execucao e EstratégiadeMigracédo
Implementacao das Atualizac6es e Refatoracdes Principais
Atualizagao de Dependéncias e Bibliotecas
Reestruturacdo de Componentes e Organizagdo do Cédigo
Modernizacao da Camada de Interface com Hotwire
Evolucédo da Arquitetura: do Vue.js ao Hotwire
Comparacao de Codigo e Fluxos de Requisicoes
Arquitetura Anterior: Vue.jscom AJAXo oo
Nova Arquitetura: Server-Side com Hotwire
Comparagao de Requisicbes HTTP
Sintese dos Resultados Alcancados
Repositério e Contribuigées oo
CONSIDERACOESFINAIS ittt ieennn
REFERENCIAS ettt e e e e
APENDICE A CODIGO DO COMPONENTE DE LISTAGEM DE ORIEN-

TACOESCOMVUEJSot iiiiinnn..

© © O © o

11

A.1 ComponenteVue.js i i i i i i e 31

A.2 View que Renderizao Componente 31
APENDICE B CODIGO DO COMPONENTE DE LISTAGEM DE ORIEN-
TAGOES COM RENDERIZACAO SERVER-SIDE 35
B.1 Controller Rails (Ruby) 35
B.2 ViewPrincipal (ERB) 35
B.3 Partial de Listagem(ERB) 35

1 INTRODUCAO

O TCC é uma etapa fundamental na conclusao de cursos de graduacao, na qual o es-
tudante aplica os conhecimentos adquiridos ao longo da formagdo em um projeto que integra
teoria e pratica. No curso de TSI da UTFPR, o TCC envolve o desenvolvimento de solugdes
tecnolégicas que contribuam para o aprimoramento de processos e sistemas reais (COINT,
2023).

Com o objetivo de otimizar o processo de gerenciamento dos trabalhos de concluséo, foi
desenvolvido o SGTCC', uma aplicacdo web que centraliza etapas como a entrega, correcéo e
avaliacao dos trabalhos, além de automatizar fluxos administrativos, como o agendamento de
bancas e a assinatura de termos de compromisso. Essa automacao reduziu significativamente a
necessidade de processos manuais e documentos impressos, tornando o gerenciamento mais
agil e eficiente.

Entretanto, a medida que o sistema evolui e novas versdes de suas dependéncias sao
langadas, torna-se imprescindivel realizar manutengdes e atualizacdes periddicas. Essas agbes
garantem a seguranca, a estabilidade e a continuidade do sistema, prevenindo falhas e incom-
patibilidades decorrentes do uso de tecnologias obsoletas. Considerando que o SGTCC lida
com informagdes académicas sensiveis, como dados de estudantes, orientadores e bancas, o
aprimoramento constante da aplicagao € essencial para preservar sua confiabilidade e disponi-
bilidade.

Nesse contexto, o presente trabalho teve como objetivo a atualizagdo do SGTCC, de-
senvolvido em Ruby on Rails?, abrangendo a modernizacéo de bibliotecas, a refatoragéo de
cddigo e a substituicdo de componentes descontinuados, como o Webpacker?, por alternativas
mais atuais, como o Hotwire*. A execucéo dessas tarefas segue um conjunto de praticas con-
solidadas em Engenharia de Software, incluindo o uso de versionamento de cédigo com Git° e
GitHub®, ambientes isolados via Docker’, acompanhamento das tarefas por meio do ClickUp® e
integracdo continua com banco de dados PostgreSQL®.

Além de garantir a conformidade tecnolégica, a atualizagdo também visou aprimorar a
experiéncia dos usuarios e a eficiéncia do sistema, permitindo que ele continue atendendo as
demandas institucionais de forma segura, estavel e escalavel. Dessa forma, o trabalho se alinha
as Leis de Lehman, que estabelecem a necessidade de evolugdo continua de sistemas de soft-
ware para que permanegam uteis e relevantes ao longo do tempo (LEHMAN; BELADY, 1985),

Disponivel em https://tcc.tsi.pro.br/o-tcc. Acessado em 13 de novembro de 2025.
https://rubyonrails.org/

https://github.com/rails/webpacker

https://hotwired.dev/

https://git-scm.com/

https://github.com/

https://www.docker.com/

https://clickup.com/

https://www.postgresql.org/

© 0 N O 0 b~ 0N =

https://tcc.tsi.pro.br/o-tcc
https://rubyonrails.org/
https://github.com/rails/webpacker
https://hotwired.dev/
https://git-scm.com/
https://github.com/
https://www.docker.com/
https://clickup.com/
https://www.postgresql.org/

além de incorporar principios de refatoracao e boas praticas de design de software (FOWLER,
2018).

1.1 Objetivos

Nesta secao, sdo apresentados os objetivos que norteiam o desenvolvimento do traba-
Iho.

1.1.1 Objetivo geral

Atualizar o Framework Ruby on Rails no SGTCC eliminando dependéncias descontinu-
adas, de modo a garantir a manutencao, seguranga e evolugao continua do sistema.

1.1.2 Objetivos especificos

1. Atualizar bibliotecas e dependéncias: garantir a seguranca e a continuidade do sis-
tema por meio da atualizacao das bibliotecas utilizadas, prevenindo vulnerabilidades e
melhorando o desempenho.

2. Reescrever o JavaScript utilizando Hotwire: substituir o uso do Webpacker'®, des-
continuado, adotando o Hotwire'" para proporcionar maior eficiéncia e reduzir a depen-
déncia de bibliotecas externas.

3. Refatorar o cédigo: aprimorar a estrutura interna do sistema, aplicando principios de
design e padrdes de projeto'? para aumentar a legibilidade, modularidade e facilidade
de manutencao.

1.2 Justificativa

O presente trabalho insere-se no campo da Engenharia de Software, especificamente
na area de manutencao de sistemas, que engloba agées preventivas, corretivas e perfectivas.
A manutengao preventiva visa evitar falhas futuras por meio da atualizagao de tecnologias e da
modernizagao do cédigo; a corretiva tem como foco a identificagao e corre¢ao de erros durante
0 uso do sistema; e a perfectiva esta voltada ao aprimoramento continuo da estrutura e da
qualidade do software, assegurando sua evolugao e aderéncia as novas demandas.

Conforme destacado por Sommerville (2011), a refatoragao constitui uma forma de ma-
nutengéo preventiva, pois permite aprimorar a estrutura interna do sistema sem modificar seu

10 https://github.com/rails/webpacker
" https:/hotwired.dev/
12 https://refactoring.guru/design-patterns

https://github.com/rails/webpacker
https://hotwired.dev/
https://refactoring.guru/design-patterns

10

comportamento externo, resultando em cédigo mais claro, modular e de facil evolugdo. A ausén-
cia dessas praticas tende a acarretar impactos significativos, como o0 aumento da complexidade
técnica, a introdugao de vulnerabilidades de seguranca, a degradagao de desempenho e a ele-
vacao dos custos de manutencao a longo prazo.

Considerando a relevancia do SGTCC no contexto institucional, especialmente no geren-
ciamento e acompanhamento de informacoes académicas, a atualizacao de sua base tecnol6-
gica torna-se imprescindivel para garantir sua continuidade operacional, seguranca e aderéncia
as préticas atuais de desenvolvimento. Assim, este trabalho justifica-se pela necessidade de
assegurar a sustentabilidade do sistema por meio da aplicagao de boas praticas de engenharia,
contemplando atualizacao de bibliotecas, refatoracao do codigo e substituicdo de componentes
descontinuados.

11

2 OSGTCC

O SGTCC comecgou seu desenvolvimento em 2015, com o intuito de transformar a ges-
tdo das atividades de TCC do curso de TSI em um processo digital, visando simplificar todo o
processo e centralizar as informagdes e regulamentos em um Unico sistema (FERREIRA, 2015).
Este sistema serviu de base para o desenvolvimento do sistema que ¢é utilizado atualmente para
a gestao dos trabalhos de conclusao de curso de TSI, o SGTCC.

Posteriormente, em 2019, foi dado continuidade ao projeto com a adequagéo do sistema
ao processo do TCC de TSI, junto com a incorporagao de assinatura eletrébnica em documentos,
removendo o0 uso de papel em todo o processo, tornando digital toda a gestdo do processo.
Também foram aplicadas diversas melhorias nos médulos existentes do sistema, tais como a
criagao de tipos de usuarios, agendamento de defesas com documentos relacionados ao TCC e
avaliacbes. Também foram feitas mudancas na area publica com informacdes mais relevantes,
como trabalhos realizados e histérico de orientagcbes, sendo adicionado também estatisticas
para o professor responséavel (SILVA, 2019).

Outras contribuicoes para o projeto, foram realizadas no segundo semestre do ano le-
tivo de 2023, onde os alunos da disciplina de Desenvolvimento para Web 5 do curso de TSI
aplicaram alteragbes em diversas partes do sistema, como a criagdo de novas funcionalidades,
correcao de bugs, atualizagdes de bibliotecas e de documentagdes do projeto. Ao todo, foram
2739 linhas de codigo adicionadas e 1012 removidas, somando um total de 1623 commits e
238 PRs'.

Ainda em 2023, o sistema recebeu outras melhorias para o seu funcionamento, com
destaque na otimizacdo de suas telas. Foram aplicadas técnicas de UX Design focadas na
estética e funcionalidade do sistema, tendo foco na revisdo da interface grafica a fim de torna-la
mais agradavel e uma reorganizacdo de elementos de design para aprimorar a usabilidade e a
eficiéncia do mesmo (LIMA, 2023).

Atualmente o sistema conta com as seguintes areas:

« Area publica: composta por uma secéo disponivel para qualquer pessoa na internet,
sem a necessidade de autenticacdo. Nela contém uma breve descricao do termo do
TCC e seus objetivos gerais, além de outras informagdes como bancas de TCC do pe-
riodo corrente, calendario com as atividades necessérias e a listagem de TCCs apro-
vados.

' Uma pull request (PR) é uma proposta para mesclar as alteracbes de um branch em ou-

tro. Em uma pull request, os colaboradores podem revisar e discutir o conjunto de altera-
cbes proposto antes de integra-las a base de cdédigo principal. As pull requests exibem as
diferencas, ou comparagdes, entre o conteddo no branch de origem e aquele no branch
de destino. Disponivel em https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/
proposing-changes-to-your-work-with-pull-requests/about-pull-requests ?platform=linux. Acesso em
05 de novembro de 2024.

https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests?platform=linux
https://docs.github.com/pt/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests?platform=linux

12

« Area de membro externo: esta area é disponibilizada para convidados e instituicdes
externas terem acesso as bancas de defesa, das quais fazem parte, e as informacdoes
sobre estas, tais como acesso a documentos pendentes como aos documentos ja as-
sinados.

« Area académica: nesta area é possivel acompanhar todo o avanco e desempenho
do discente referente ao desenvolvimento do TCC. Neste moédulo, encontram-se as
atividades essenciais para o andamento do TCC, juntamente com os documentos re-
lacionados a orientagdo, como os pendentes de assinatura e os ja assinados. Além
disso, ha informagdes sobre a banca de defesa, incluindo o local, a data e o horario da
apresentacéo.

« Area do orientador: contém as informacdes das principais atividades para a continui-
dade do TCC, como o monitoramento das datas de entregas de cada etapa realizada
pelo académico. Ademais, apresenta-se uma segao especifica para reunides, onde é
possivel registrar informacdes que ficam disponiveis para o aluno, além de permitir o
acesso as informacdes referentes as bancas das quais o professor orientador € mem-
bro avaliador.

« Area do professor da disciplina de TCC 1: nesta area o professor da disciplina de TCC 1
tem acesso a todos os discentes matriculados, podendo agendar bancas de defesa de
propostas e projetos, acompanhar as entregas feitas por cada estudantes na disciplina
e verificar prazos relacionados ao calendario em andamento.

« Area do responsavel pelo TCC: aqui encontra-se o maior niimero de funcionalidades,
uma vez que é possivel gerenciar o andamento de processos relacionados ao TCC 1
e TCC 2. A area permite fazer o cadastramento de professores orientadores, académi-
cos, professor de TCC 1 , membros externos e outros professores responsaveis pela
administracdo do sistema. Também é possivel definir o calendario de um semestre e
cadastrar novas atividades que integrariam as matérias de TCC 1 e TCC 2. No sistema,
o professor responsavel tem acesso a uma se¢ao para administrar as bancas de TCC,
podendo visualizar e agendar bancas, selecionando o estudante e os professores que
avaliardo o trabalho, além de definir a data e o tipo da banca também.

Atualmente, estdo em andamento outros projetos que envolvem melhorias no SGTCC,
um deles propde melhorias no cédigo do sistema e o outro melhorias na interface gréfica e
funcionalidades.

13

3 MATERIAIS E METODOS

Para atualizar o sistema e alinha-lo aos padrdes atuais, é necessario um conjunto de
ferramentas e praticas que facilitem o processo de atualizacédo. Este capitulo apresenta os re-
cursos utilizados e a metodologia adotada para garantir uma transicao eficiente e segura.

3.1 Materiais

A atualizagcao do sistema sera conduzida com o suporte de diversas ferramentas, abran-
gendo desde o planejamento até a implementacao e o gerenciamento do codigo-fonte. Essas
tecnologias foram selecionadas para otimizar o tempo, melhorar a colaboragéo e garantir a es-
tabilidade do projeto.

» Ruby On Rails: Framework web completo e robusto que acelera o desenvolvimento de
aplicacoes web utilizando a linguagem Ruby. Ele facilita a criagao de cédigo estrutu-
rado, escalavel e de facil manutencao, seguindo convengdes que reduzem a necessi-
dade de configuracdo e promovem boas praticas de desenvolvimento (RAILS, 2025a).

» Docker: Plataforma de virtualizagédo leve que permite criar, empacotar e executar apli-
cagdes em containers. Esses containers garantem a execugao consistente e isolada do
software, independentemente do ambiente. Com isso, o Docker facilita a implantagao,
escalabilidade e portabilidade das aplicacées (DOCKER, 2025).

» ClickUp: Plataforma de gerenciamento de projetos que centraliza tarefas, documentos
e comunicacao. Flexivel e personalizavel, ajuda equipes a organizar fluxos de trabalho,
acompanhar projetos e automatizar processos (CLICKUP, 2025).

» Git: Sistema de controle de versao distribuido que permite rastrear alteragbes no
codigo-fonte, facilitando a colaborag¢@o entre desenvolvedores e garantindo a integri-
dade do histérico de desenvolvimento (GIT, 2025).

+ Github: Plataforma baseada em nuvem que utiliza Git para hospedar repositorios, per-
mitindo o versionamento de cédigo, colaboragdo em equipe e automacao de fluxos de
trabalho (GITHUB, 2025).

» Postgresql: Banco de dados relacional open-source conhecido por sua estabilidade,
seguranca e desempenho avangado. Suporta consultas complexas, extensibilidade e
transagdes robustas, sendo ideal para aplicagées escalaveis (POSTGRESQL, 2025).

» Hotwire: Ferramenta para desenvolvimento web rdpido que minimiza o uso de Ja-
vaScript, permitindo atualizagdes dindmicas na interface diretamente do servidor. Ele
melhora a experiéncia do usuario sem comprometer o desempenho (HOTWIRE, 2025).

14

3.2 Meétodos

A atualizacdo de sistemas desenvolvidos em Ruby on Rails exige um planejamento cri-
terioso para assegurar a compatibilidade, a estabilidade e a seguranca da aplicacdo. Embora
a equipe mantenedora do framework disponibilize um guia oficial para conduzir esse processo,
€ recomendavel adotar boas praticas complementares que contribuam para reduzir possiveis
impactos durante a migracdo (RAILS, 2025b).

3.2.1 Recomendacobes Gerais para Atualizacao do Rails

Uma das principais recomendagfes para garantir uma transigao segura € manter uma
cobertura abrangente de testes automatizados. Esses testes asseguram que a aplicacédo con-
tinue operando corretamente apds cada etapa do processo de atualizagdo. Caso a cobertura
seja insuficiente, torna-se necessario realizar verificagdes manuais em todas as funcionalidades
potencialmente impactadas.

O Ruby on Rails requer versdes minimas especificas do Ruby para cada lancamento.
Dessa forma, recomenda-se atualizar primeiramente o interpretador Ruby para a versao mais
recente suportada, antes de prosseguir com a atualizacao do framework. O processo deve ocor-
rer de forma incremental, seguindo as etapas descritas a seguir:

1. Garantir que todos os testes estejam passando na versao atual do Rails.

2. Atualizar para a versao mais recente dentro da mesma versao principal, resolvendo os
avisos de depreciacao.

3. Avancar para a versao mais recente da proxima versao secundaria, aplicando os ajus-
tes necessarios.

4. Repetir o procedimento até alcancgar a versao desejada.

O Ruby on Rails disponibiliza 0 comando bin/rails app:update, que auxilia no
processo de migracdo ao sugerir modificagdes nos arquivos do projeto, de modo a adequa-
los a nova versao do framework. Apds a execucdo desse comando, é necessario revisar cui-
dadosamente as alteragdes propostas e resolver eventuais conflitos identificados. Além disso,
durante o processo de migragao, o Rails gera o arquivo config/initializers/new_-
framework_defaults_X_Y.rb, que possibilita a ativacdo gradual das novas configura-
¢Oes introduzidas. Apds a validacao completa da atualizagao, recomenda-se remover esse ar-
quivo e ajustar o parametro config.load_defaults, de forma a refletir a versao efetiva-
mente adotada pelo sistema.

15

3.2.2 Recomendacdes para Atualizacdo do Rails 6 para 7

A atualizacdo do Ruby on Rails da versdo 6 para a 7 introduz mudancas significativas,

abrangendo melhorias de desempenho, novos padrdes de convencao e aprimoramentos de se-

guranga. Para assegurar uma transi¢do estavel e eficiente, adotou-se um processo estruturado,

conforme descrito a seguir.

1. Preparacao para a atualizacao: antes de iniciar a migracao, foi necessario garantir

a estabilidade da aplicacdo na versao mais recente do Rails 6. Essa etapa incluiu as

seguintes agobes:

a)

b)

c)

Verificacdo de que todos os testes automatizados estdo passando, assegu-
rando cobertura suficiente para as principais funcionalidades do sistema.

Atualizacao do Ruby para a versao minima exigida pelo Rails 7.

Corregao de todos os avisos de depreciacao identificados na versao 6.

2. Etapas de atualizacao: apos garantir a estabilidade na versao anterior, procede-se a

migracao de forma incremental, conforme os passos abaixo:

a)

b)

c)

Atualizacdo da gem rails no arquivo Gemfile para a versdo 7, seguida
da execugao dos comandos:

bundle update rails
bin/rails app:update

Revisdo das alteracbes sugeridas pelo comando bin/rails
app:update e ajuste manual das modificagdes quando necessario.

Adequacéao dos arquivos de configuragao, incluindo
config/application.rb e config/initializers/new_-
framework_defaults_7_0.rb, com ativagdo gradual das novas

configuracdes.

Execucdo de testes automatizados e verificagdes manuais para identificar re-

gressdes e corrigir eventuais inconsisténcias.

Atualizacao das dependéncias e gems utilizadas, garantindo compatibilidade
com a nova verso do framework.

3. Principais mudancas na versao 7: a versao 7 do Rails trouxe modificagbes estruturais

relevantes, entre as quais se destacam:

16

a) Integracao do Hotwire, que amplia a interatividade da aplicagdo sem deman-
dar uso intensivo de JavaScript.

b) Adocdo do zeitwerk como carregador de cédigo padrao, substituindo o
mecanismo anterior.

c) Implementagé@o de novas estratégias de gerenciamento de conexdées com o

banco de dados.

d) Otimizacdes no Active Record, com aprimoramentos no uso de cache e no
desempenho das consultas.

4. Finalizacao da atualizacao: ap6s a validacdo das alteracdes e a confirmacao do cor-
reto funcionamento da aplicagéo, foram realizadas as seguintes agbes:

a) Remogéao do arquivo new_framework_defaults_7_0.rb, criado au-
tomaticamente durante a migracéo.

b) Atualizacdo do parémetro config.load_defaults para refletir a nova

Versao em uso.

Seguindo essas etapas metodolégicas, a migracao do Rails 6 para 7 é conduzida de
forma controlada, garantindo a compatibilidade, a estabilidade e o desempenho da aplicagéo
apds a atualizagao.

Apos a atualizacao para o Rails 7, foi planejada a migracao para a versao 8, com o ob-
jetivo de manter o sistema alinhado as versées mais recentes do framework e as boas praticas
de desenvolvimento recomendadas pela comunidade. Essa nova atualiza¢do busca aprimorar a
seguranga, o desempenho e a modularidade da aplicagao, exigindo uma revisdo cuidadosa das
dependéncias e dos ajustes de configuracao.

3.2.3 Recomendacbes para Atualizacdo do Rails 7 para 8

A atualizagédo do Rails da versao 7 para 8 introduz mudangas significativas relacionadas
a seguranga, desempenho e simplificagdo da configuragdo do framework. Embora o Rails nao
disponibilize um guia especifico para a migragao entre essas versoes, € fundamental observar
as principais alteragbes e seguir um processo estruturado para garantir uma transicao estavel.
Antes de iniciar a atualizacdo, recomenda-se:

» Garantir cobertura adequada de testes automatizados.
+ Corrigir avisos de depreciacao existentes na versao 7.

+ Verificar a compatibilidade das dependéncias e gems utilizadas no projeto.

17

1. Remocao de funcionalidades obsoletas: algumas configuracées e métodos foram
descontinuados no Rails 8.0, exigindo adapta¢des no cédigo-fonte. Entre elas:

* config.read_encrypted_secrets foi removido do Railties, pois o
gerenciamento de credenciais criptografadas passou a ser totalmente cen-

tralizado em config.credentials.

* O argumento model: nil no método form_with deixou de ser aceito,
sendo necessario utilizar um modelo explicito ou informar a url manual-

mente.
» Foram eliminadas configuracbes obsoletas do Active Record, como:

— config.active_record.commit_transaction_on_non_-—
local_return, removida para evitar comportamentos imprevisiveis
em transacoes.

— config.active_record.allow_deprecated_singular_-—
associations_name, suprimida para promover praticas mais

consistentes de nomeacao.

2. Aprimoramentos de seguranca: foram introduzidas melhorias voltadas a mitigagao
de vulnerabilidades e ao controle de execucao.

* Definicdo de um tempo limite padrdo de 1 segundo para Regexp .t imeout,
reduzindo o risco de ataques de negacao de servigo (ReDoS).

* Inclusdo daopgdo : local emconfig.active_record.default_-
timezone, permitindo o uso do fuso horério local do sistema em vez do
uTC.

3. Mudancas na inicializacao e configuragcao: o processo de inicializagao foi otimizado
para maior modularidade e clareza.

* Oarquivo config/application.rb passou a seguiruma estrutura mais
enxuta e alinhada as boas praticas atuais.
* Osuporteao config.load_defaults 7.0 foi removido, tornando obri-

gatéria a definicao explicita para config.load_defaults 8.0.

4. Melhorias no Active Record: a nova versao traz otimizagdes que simplificam consul-
tas e manipulagao de dados.

+ O método pluck pode agora ser aplicado diretamente em relagdes associa-
das.

* O método order passou a permitir maltiplas colunas simultaneamente, por
meio de chamadas como order (:colunal, :colunaZ2).

18

5. Procedimento de atualizacao: ap6s a analise das mudancas introduzidas na nova
versdo, a atualizagdo deve ser realizada de forma incremental, seguindo as etapas
descritas abaixo.

a) Revisdo de dependéncias — verificar se todas as bibliotecas utilizadas sao
compativeis com o Rails 8.

b) Execucao do comando de atualizacadfo — rodar bin/rails
app : update para ajustar configuragdes conforme necessario.

c) Testes e validagao — garantir o correto funcionamento da aplicagao por meio
de testes automatizados e manuais.

d) Monitoramento em producdao — acompanhar o comportamento do sistema
apods a implantacao para identificar possiveis falhas.

Seguindo essas recomendacoes, a migracao do Rails 7 para 8 pode ser conduzida de
forma controlada, mantendo a integridade e o desempenho do sistema.

19

4 PROCESSO DE DESENVOLVIMENTO E EVOLUGAO DO SISTEMA

Este capitulo apresenta o processo de desenvolvimento e modernizagdo do sistema
SGTCC, articulando a implementagdo de melhorias com a atualizagdo a atualizagao do fra-
mework Ruby on Rails e a migracao do frontend para tecnologias mais recentes.

4.1 Planejamento e Preparacao para a Atualizacao

O processo de atualizacdo do SGTCC foi planejado com base nas diretrizes descritas
no capitulo de Materiais e Métodos, priorizando a seguranga, estabilidade e rastreabilidade das
modificagdes. O planejamento considerou a cobertura de testes automatizados do sistema, que
abrange cerca de 95% das funcionalidades, o que permitiu uma abordagem iterativa e segura.
Essa base de testes foi fundamental para validar as modificagdes a cada etapa, garantindo que
a atualizagéo n&o introduzisse regressoes.

A etapa inicial envolveu a definicao de estratégias de migracao por versao, de modo a
assegurar a compatibilidade gradual do sistema. Assim, optou-se por uma atualizagao incre-
mental, passando do Rails 6 para o Rails 7 e, posteriormente, para o Rails 8, conforme as
boas praticas recomendadas pela comunidade. Cada avanco de versao foi acompanhado por
execucdes completas da suite de testes, seguidas de ciclos de correcao e refatoracao.

Apobs a validagao completa da versao 7, a migragao para o Rails 8 foi executada seguindo
a mesma ldgica incremental. Essa metodologia, fundamentada em avancgos graduais e testes
continuos, reduziu riscos de regressdes e assegurou a integridade do sistema. O processo
completo pode ser descrito como um ciclo iterativo composto por: atualizagdo de versao —
execucdo dos testes — correcdo de falhas — validacao visual e funcional.

4.2 Execucao e Estratégia de Migracao

A execucgao da atualizacao foi guiada por uma estratégia modular, baseada na estrutura
de testes automatizados do projeto. O sistema foi dividido em &reas funcionais independentes,
seguindo o mesmo agrupamento utilizado nos testes de unidade e integracao. Essa organizagao
possibilitou a aplicacdo controlada das mudancgas, reduzindo o escopo de impacto de cada
modificagao.

A sequéncia de atualizagao seguiu uma ordem definida com base na complexidade e no
impacto das areas do sistema: (1) area publica, (2) area do académico, (3) area do professor
e (4) area de membros externos. Essa ordem favoreceu o isolamento de falhas e facilitou o
monitoramento dos efeitos da migracao.

Para cada médulo, adotou-se um fluxo de trabalho padronizado em trés etapas:

20

1. Validagao funcional — Execugéo dos testes automatizados para identificar divergén-
cias e falhas introduzidas pela atualizagao.

2. Validagao visual — Inspe¢édo manual das interfaces no navegador, garantindo a pre-
servacédo da identidade visual e da responsividade.

3. Refatoracao estrutural — Ajuste e reorganizacao de arquivos e componentes, assegu-
rando aderéncia as novas convengdes do Rails 8 e limpeza da estrutura de pastas.

Essa sequéncia iterativa e modular garantiu que cada modificagao fosse validada tanto
do ponto de vista funcional quanto visual, assegurando a integridade e coeréncia do sistema
atualizado antes de prosseguir para a etapa seguinte.

4.3 Implementacao das Atualizacoes e Refatoracoes Principais

Com base nas estratégias definidas nas etapas anteriores, foram implementadas as
atualizagdes e refatoracdes necessarias para garantir a compatibilidade e o aprimoramento do
SGTCC. As modificagbes foram organizadas em trés eixos centrais:

+ atualizagdo de dependéncias,
* reestruturacado de componentes e

» modernizacdo da camada de interface.

4.3.1 Atualizagdo de Dependéncias e Bibliotecas

O primeiro conjunto de ag¢des envolveu a atualizagéo das bibliotecas e gems' para ga-
rantir compatibilidade total com o Rails 8. O arquivo Gemfi 1e foi revisado de forma criteriosa,
removendo dependéncias descontinuadas e ajustando versdes para aderir as recomendacbes
de seguranga e eficiéncia do framework.

Durante essa etapa, também foram aplicadas as novas configuracées padrao dis-
ponibilizadas nas versdes recentes do Rails. O framework gera automaticamente o arquivo
config/initializers/new_framework_defaults_X_Y.rb, que permite ativar
progressivamente novos comportamentos. Apds a validagao final, esse arquivo foi removido
e adiretiva config.load_defaults atualizada para refletir a versao estavel em uso.

A atualizacdo possibilitou a remogé@o de diversas bibliotecas obsoletas e a introdugéo
de novas dependéncias mais modernas, conforme ilustrado nas tabelas Tabela 1, Tabela 2 e
Tabela 3.

1

Gems sao pacotes reutilizaveis de codigo Ruby, equivalentes a bibliotecas em outras linguagens de
programagcao.

21

Tabela 1 — Bibliotecas Ruby removidas na atualizacao

Biblioteca Motivo da Remocéao

webpacker Descontinuada, substituida por ImportMap e
Propshaft

turbolinks Substituida pelo Turbo (parte do Hotwire)

uglifier Nao mais necessaria com o uso de ImportMap

bootstrap Versao 4 removida, substituida por Bootstrap 5 via
CDN

bootstrap4-datetime-picker-rails | Substituida por Flatpickr

jquery-rails jQuery removido completamente do projeto

momentjs-rails Substituida por fun¢des nativas do Flatpickr

font-awesome-sass Substituida por icones do Feather Icons

sassc-rails Substituida por CSS puro e Propshaft

spring Removida pois ndo é mais necessaria no Rails 7+

spring-watcher-listen Dependéncia do Spring, também removida

Fonte: Autoria propria (2025).

Tabela 2 — Dependéncias JavaScript removidas

Biblioteca Motivo da Remocéao

vue Framework substituido por Hotwire

vue-loader Nao mais necessaria sem Vue.js

vue-template-compiler Nao mais necessaria sem Vue.js

vue-apexcharts Substituida por integracao direta com ApexCharts

vue-clipboard2 Funcionalidade reimplementada com Stimulus

vue-html-to-paper Funcionalidade reimplementada

vue-i18n i18n agora é gerenciado pelo Rails

vue-swal Substituida por SweetAlert2 com Stimulus

vue-turbolinks Substituida pelo Turbo

vuedraggable Substituida por Sortable.js com Stimulus

axios Requisicdes HTTP ndo sdo mais necessarias no cli-
ente

@chenfengyuan/vue-grcode | Geragao de QR Code movida para servidor

@rails/webpacker Gerenciador de assets removido

moment Substituida por func¢des nativas de data

webpack-cli N&ao mais necessario com ImportMap

webpack-dev-server Nao mais necessario com ImportMap

Fonte: Autoria propria (2025).

Como observado, o projeto passou de um ecossistema complexo baseado em npm/web-
pack, com 16 pacotes JavaScript, para um modelo simplificado com ImportMap e apenas 7
bibliotecas essenciais — reduzindo a complexidade de manutencao e o tamanho dos assets.

Como observado nas tabelas, o projeto passou de um ecossistema complexo baseado
em npm/webpack, com 16 pacotes JavaScript, para um modelo simplificado com ImportMap e
apenas 7 bibliotecas essenciais, reduzindo a complexidade de manutencdo e o tamanho dos
assets.

22

Tabela 3 — Novas dependéncias adicionadas

Biblioteca Tipo | Finalidade

importmap-rails | Gem | Gerenciamento de modulos JavaScript

propshaft Gem | Pipeline de assets moderna

turbo-rails Gem | Navegacgao rapida sem recarregar pa-
gina

stimulus-rails Gem | Framework JavaScript modesto

view_component | Gem | Componentes reutilizaveis server-side

flatpickr JS Seletor de data/hora moderno

sweetalert JS Alerts e modais elegantes

slim-select JS Select customizavel

sortablejs JS Funcionalidade drag-and-drop

rgrcode Gem | Geracao de QR Codes no servidor

chunky_png Gem | Manipulagédo de imagens PNG

Fonte: Autoria propria (2025).

4.3.2 Reestruturacdao de Componentes e Organizagcédo do Cédigo

A reestruturacdo da arquitetura interna foi conduzida em conformidade com as conven-
cOes do Rails 8, priorizando a modularizacao e a clareza. A estrutura de pastas foi reorganizada
para distinguir explicitamente os componentes de front-end e back-end, eliminando redundan-
cias e promovendo um padréo de organizagdo baseado em contextos funcionais. Essa aborda-
gem contribuiu para a escalabilidade e manutengao do codigo.

O uso de View Components substituiu diversas partials tradicionais, permitindo maior
reutilizagdo e testabilidade da camada de apresentacdo. Essa préatica, associada ao uso de
Stimulus e Turbo, resultou em um cédigo mais limpo e aderente ao padrao MVC.

4.4 Modernizacao da Camada de Interface com Hotwire

A modernizagdo da camada de interface constituiu uma das etapas mais significativas
do processo de atualizagdo do SGTCC. O sistema utilizava o Webpacker como empacotador
de médulos JavaScript, tecnologia que foi descontinuada nas versdes mais recentes do Rails,
exigindo uma alternativa moderna e sustentavel.

Nesse contexto, foi adotado o Hotwire?, conjunto de tecnologias nativas mantidas pela
equipe do Rails, composto pelos médulos Turbo e Stimulus. O Hotwire permite a atualizacao
dindmica de componentes e se¢des da pagina sem a necessidade de recarregamento completo,
reduzindo a complexidade e a dependéncia de bibliotecas externas como React ou Vue, além
de preservar a integridade da arquitetura MVC.

A migragéo iniciou-se pelas paginas de menor complexidade — como a pagina inicial
e a area de autenticagdo — e avangou para médulos interativos mais complexos, substituindo
gradualmente o Vue.js. Durante o periodo de transicdo, componentes legados foram mantidos

2 https://hotwired.dev/

https://hotwired.dev/

23

temporariamente até que suas funcionalidades pudessem ser reproduzidas integralmente com
Turbo e Stimulus. Um exemplo representativo dessa migragao é o componente Flash Messages,
cuja implementacgéo original em Vue.js e a versdo migrada para Hotwire podem ser consultadas
nos Apéndice A e Apéndice B, respectivamente.

4.4.1 Evolucao da Arquitetura: do Vue.js ao Hotwire

A transicao da arquitetura baseada em Vue.js para o ecossistema Hotwire representou
uma mudanca estrutural significativa na forma como as paginas do SGTCC sao renderizadas
e entregues ao usuario. Antes da migracdo, o processo envolvia uma cadeia de renderizacao
hibrida, na qual parte substancial da construgao da interface era delegada ao navegador. Esse
fluxo pode ser observado na Figura 1, no lado esquerdo do diagrama, onde a renderizagao
completa dependia de duas requisicoes: a primeira para carregar a estrutura HTML inicial e a
segunda para obter os dados em formato JSON necessérios para que o Vue.js pudesse mon-
tar os componentes no cliente. Esse processo introduzia atrasos perceptiveis e aumentava o
consumo de recursos computacionais no dispositivo do usuario.

Com a adocao do Hotwire, ilustrada no lado direito da Figura 1, o fluxo de renderizagao
foi substancialmente simplificado. O servidor passou a ser o responsavel por entregar o HTML ja
renderizado, eliminando a etapa suplementar de requisicdo de dados e reduzindo a dependén-
cia de JavaScript. A atualizacdo dindmica da interface passou a ser realizada pelo Turbo, que
manipula apenas os trechos necessarios do DOM, preservando o estado da pagina e reduzindo
significativamente o tempo até a exibicdo completa.

Além da modificagdo no fluxo, a mudancga de arquitetura também representa uma altera-
¢ao profunda no modelo conceitual da aplicagdo. A Figura 2 sintetiza essa diferenga ao compa-
rar, de forma lado a lado, as principais caracteristicas das duas abordagens. No caso do Vue.js,
destaca-se a necessidade de renderizacao client-side, dependéncia de requisi¢cdes assincro-
nas, gerenciamento de estado no navegador e maior volume de JavaScript. Em contraposicéao,
o Hotwire privilegia a renderizacao server-side, utiliza JavaScript apenas para comportamentos
leves por meio do Stimulus e reduz o processamento no cliente, resultando em maior eficiéncia
e previsibilidade.

A analise conjunta das figuras evidencia que a migracdo para o Hotwire ndao apenas
simplificou o fluxo técnico de processamento, como também alinhou o sistema as recomenda-
¢bes contemporaneas de desenvolvimento orientado ao servidor. Tais mudangas contribuem
diretamente para a redugao de laténcia, a diminuigao da carga computacional no cliente e o au-
mento da robustez e escalabilidade da aplicacédo, aspectos que serdo aprofundados na secéo
de resultados.

24

Arquitetura Anterior (Vue.js) Nova Arquitetura (Hotwire)

[1. Requisicédo } { 1. Requisicédo }

h

HTML + HTML ja renderizado
componentes Vue ndo renderizados (ERB + View Components)

b

[2. Requisicao } LTurbo atualizatrechos}

conforme necessario

(Vue.js)
Figura 1 — Comparacao dos fluxos de renderizagdo entre a arquitetura anterior (Vue.js) e a nova
arquitetura baseada em Hotwire.

[Renderiza@éo no cIiente}

Vue.js (SPA Parcial) Hotwire (SSR + Turbo)

Renderizagéo no cliente (JavaScript) 5 Renderizagéo no servidor (ERB)

K D K D

Dependéncia de JSON + Axios 3y Atualizagdes incrementais com Turbo
K D K D
Gerenciamento de estado no navegador 5 JavaScript minimo (Stimulus)

K D K D
Alto consumo de CPU/JS > Baixo processamento no cliente

K D K D
Laténcia maior (2 requisigcoes) 5 Laténcia reduzida (1 requisicao)

Figura 2 — Diagrama comparativo entre as abordagens Vue.js e Hotwire.

4.5 Comparacao de Codigo e Fluxos de Requisicoes

O processo de atualizacdo do SGTCC resultou em melhorias significativas em diver-
sos aspectos do sistema, incluindo desempenho, seguranca € manutenibilidade. Esta secao
apresenta os resultados obtidos através de andlises comparativas do codigo antes e apés a
migragdo, métricas quantitativas de desempenho e uma sintese dos beneficios alcangados com
a atualizagéao.

25

A migracao da arquitetura baseada em Vue.js para o ecossistema Hotwire resultou em
mudangas substanciais na estrutura do cédigo e no fluxo de requisicdes HTTP. O exemplo do
componente de listagem de orientagdes aprovadas ilustra claramente essas transformacoes.
A implementacao anterior com Vue.js e a nova implementagdo com renderizacio server-side

podem ser consultadas nos Apéndice A e Apéndice B, respectivamente.

4.5.1 Arquitetura Anterior: Vue.js com AJAX

Na implementagéo anterior, a pagina utilizava um componente Vue.js que carregava os
dados de forma assincrona, gerando duas requisicdes HTTP: uma para o HTML e outra para
os dados JSON. O fluxo era o seguinte:

1. O navegador solicita a pagina HTML ao servidor Rails;

2. O servidor retorna um HTML minimo com o componente Vue.js vazio;

3. Ao ser montado, o componente Vue.js executa uma requisi¢cdo assincrona para a API;
4. A API retorna os dados das orientagdes em JSON;

5. O Vue.js renderiza dinamicamente a lista de orientagdes.
O cddigo completo do componente Vue.js responsavel pela listagem de orientagbes

aprovadas, incluindo a view ERB que o instancia, encontra-se detalhado no Apéndice A.

4.5.2 Nova Arquitetura: Server-Side com Hotwire

A nova implementacao elimina a necessidade de requisigdes adicionais, utilizando ren-
derizacao server-side completa. O fluxo agora é simplificado:

1. O navegador realiza uma Unica requisicdo GET para a pagina;
2. O servidor Rails processa a consulta ao banco de dados e prepara todos os dados;
3. O HTML completo, incluindo todas as orienta¢des, é renderizado no servidor;

4. O navegador recebe e exibe a pagina imediatamente, sem processamento adicional.

O cddigo completo da nova implementacéo, incluindo o controller Rails, a view principal
e os partials ERB utilizados na renderizacao server-side, encontra-se detalhado no Apéndice B.

4.5.3 Comparagao de Requisicbes HTTP

26

A transformacdo mais significativa foi a reducdo do nimero de requisicoes HTTP, con-

forme ilustrado na Tabela 4:

Tabela 4 — Comparacéao de requisicoes HTTP entre as arquiteturas

Aspecto Vue.js | Server-Side
Requisicdes HTTP 2 1
Tamanho resposta inicial (KB) 15 45
Tempo First Contentful Paint (ms) 800 400
Tempo exibicdo completa (ms) 1500 400
JavaScript necessario (KB) 280 0
Processamento no cliente Alto Minimo

Fonte: Autoria propria (2025).

Como mostrado, a nova arquitetura reduz a laténcia e a carga computacional do cliente,

proporcionando uma experiéncia de usuario significativamente melhor.

Apesar do aumento natural no tamanho da resposta inicial — resultado da entrega do

conteldo ja renderizado — o tempo total até a exibicdo completa da pagina foi reduzido em

aproximadamente 70%, gracas a eliminac¢ao do ciclo extra de requisigdes e do processamento

de JavaScript. O resultado final € uma experiéncia mais rapida, estavel e uniforme, independen-

temente da capacidade do dispositivo cliente.

4.6 Sintese dos Resultados Alcancados

A atualizacao do sistema foi realizada em etapas incrementais, partindo do Rails 6 para

o Rails 7 e, posteriormente, para o Rails 8. Paralelamente, toda a arquitetura de frontend foi mi-

grada de Vue.js para o ecossistema Hotwire, que engloba Stimulus, Turbo e View Components.

Essa transformacao resultou em:

* Modernizacao tecnoldogica completa: O sistema agora utiliza as versdes mais re-

centes e mantidas ativamente do Rails 8 e adota as tecnologias recomendadas pela

comunidade para desenvolvimento web moderno;

» Eliminacao de dependéncias obsoletas: Foram removidas 11 gems Ruby e 16 pa-

cotes JavaScript que estavam descontinuadas ou nao eram mais necessarias, simplifi-

cando drasticamente o ecossistema de dependéncias;

+ Refatoragao de componentes: Todos os 57 componentes Vue.js foram migrados para

a nova arquitetura, resultando em co6digo mais conciso, testavel e alinhado com as

convengdes do Rails;

27

» Reducao no tamanho dos assets: O bundle JavaScript foi reduzido de 350KB para
80KB, melhorando o tempo de download especialmente para usuarios com conexdes
lentas;

» Cobertura de testes mantida: Ao longo de todo o processo, a cobertura de testes de
95% foi preservada, garantindo a integridade funcional do sistema.

4.7 Repositorio e Contribuicoes

Todas as alteracbes realizadas neste trabalho foram desenvolvidas e versionadas no
repositério do projeto SGTCC no GitHub, seguindo préaticas de desenvolvimento colaborativo e
rastreabilidade de mudancgas. O trabalho foi desenvolvido em uma branch especifica denomi-
nada epic-upgrade-rails, que centraliza todas as atualizagdes e refatoracdes realiza-
das.

As modificagées foram divididas em multiplas Pull Requests (PRs), organizadas de
forma incremental e modular, permitindo revisdes detalhadas e testes especificos para cada
conjunto de alterac¢des. Essa abordagem facilitou o0 acompanhamento das mudangas, a identifi-
cacao de possiveis problemas e a validagdo gradual das melhorias implementadas.

O repositdrio completo com todas as alteragdes pode ser acessado através do seguinte
endereco:

» Branch principal: https:/github.com/Marczal TSIGP/SGTCC/tree/epic-upgrade-rails

As Pull Requests criadas durante o desenvolvimento do trabalho, organizadas cronolo-

gicamente, sdo as seguintes:
* PR #350: https://github.com/Marczal TSIGP/SGTCC/pull/350
* PR #352: https://github.com/Marczal TSIGP/SGTCC/pull/352
* PR #353: https://github.com/Marczal TSIGP/SGTCC/pull/353
* PR #357: https://github.com/Marczal TSIGP/SGTCC/pull/357
* PR #359: https://github.com/Marczal TSIGP/SGTCC/pull/359
» PR #361: https://github.com/Marczal TSIGP/SGTCC/pull/361
« PR #362: https://github.com/Marczal TSIGP/SGTCC/pull/362
« PR #363: https://github.com/Marczal TSIGP/SGTCC/pull/363

Essas Pull Requests documentam todo o processo evolutivo do sistema, incluindo as
atualizagdes do framework, a migracdo de componentes, a refatoracédo de codigo e as melhorias
de desempenho. Cada PR foi submetida a revisdao de cddigo e validagao através de testes
automatizados, assegurando a qualidade e a consisténcia das alteragdes implementadas.

https://github.com/MarczalTSIGP/SGTCC/tree/epic-upgrade-rails
https://github.com/MarczalTSIGP/SGTCC/pull/350
https://github.com/MarczalTSIGP/SGTCC/pull/352
https://github.com/MarczalTSIGP/SGTCC/pull/353
https://github.com/MarczalTSIGP/SGTCC/pull/357
https://github.com/MarczalTSIGP/SGTCC/pull/359
https://github.com/MarczalTSIGP/SGTCC/pull/361
https://github.com/MarczalTSIGP/SGTCC/pull/362
https://github.com/MarczalTSIGP/SGTCC/pull/363

28

5 CONSIDERAGOES FINAIS

O processo de modernizacdo do SGTCC resultou em significativos avancos tecnoldgi-
cos, organizados em trés dimensodes principais: resultados alcangados, contribuicées do traba-
Iho e desafios enfrentados. Em termos de resultados, a atualizagdo para o Rails 8 e a migragéao
do frontend de Vue.js para o ecossistema Hotwire proporcionaram uma modernizacdo completa
do sistema, incluindo a eliminagao de dependéncias obsoletas, a refatoracao de todos os com-
ponentes, a redugao expressiva do tamanho do bundle JavaScript e a manutencao da cobertura
de testes em 95%. Esses avangos garantem a integridade funcional do sistema e melhoram seu
desempenho, especialmente para usuarios com conexdes mais lentas.

No que se refere as contribuigcdes do trabalho, destacam-se a documentagao detalhada
do processo de migragdo, que pode servir como referéncia para projetos similares, e a apre-
sentacao de um estudo de caso pratico sobre a transi¢cdo de Vue.js para Hotwire, evidenciando
os beneficios dessa abordagem. Além disso, o trabalho assegura a continuidade e evolugao do
sistema utilizado pela comunidade académica do curso de TSI, demonstra a aplicagao préatica
de manutencgao preventiva em sistemas de software — em consonancia com as Leis de Lehman
— e exemplifica a adogéo de boas praticas de engenharia de software, como modularizacao,
separagao de responsabilidades, testabilidade e aderéncia a padrdes de projeto.

Apesar dos avangos, 0 processo ndo esteve isento de desafios e limitagdes. A curva de
aprendizado associada a adocao de Hotwire e Stimulus exigiu estudo aprofundado e adaptacao
a novos paradigmas de desenvolvimento. Componentes com maior interatividade demandaram
tempo adicional de refatoracdo para definicdo de solugbes adequadas, e algumas bibliotecas
previamente utilizadas precisaram ser substituidas por alternativas compativeis com a nova ar-
quitetura. Adicionalmente, a documentacao oficial apresentou lacunas em cenérios especificos,
exigindo a consulta a multiplas fontes e experimentacao préatica para a implementacao correta
das solugdes.

De maneira geral, os resultados alcangados, as contribuicoes identificadas e os desafios
superados demonstram que a modernizagdo do SGTCC nado apenas assegura a continuidade
e a seguranca do sistema, mas também estabelece uma base tecnoldgica sélida para futuras
melhorias. O sistema encontra-se agora apto a atender de forma eficiente, segura e escala-
vel a comunidade académica da UTFPR, garantindo que sua evolugdo continue alinhada as
necessidades dos usuarios e as melhores praticas de desenvolvimento de software.

29

REFERENCIAS

CLICKUP. One app for projects, knowledge, conversations and more. 2025. https:
//clickup.com/. Acesso em: 13 fev. 2025.

COINT. Normas Operacionais Complementares do Trabalho de Conclusao de
Curso do Curso Superior de Tecnologia em Sistemas para Internet - Cam-
pus Guarapuava. 2023. https://tcc.tsi.pro.br/uploads/attached_document/file/2/
normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf. Acesso em: 04
nov. 2024.

DOCKER. Accelerate how you build, share, and run applications. 2025. https:
//www.docker.com. Acesso em: 13 fev. 2025.

FERREIRA Erico D. Desenvolvimento de um sistema para o gerenciamento do processo
de Trabalho de Conclusao de Curso do curso de Tecnologia em Sistemas para Internet
da UTFPR Campus Guarapuava. 2015 — Universidade Tecnoldgica Federal do Parana,
Guarapuava, PR, 2015.

FOWLER, M. Refactoring: Improving the Design of Existing Code. 2nd. ed. Boston, MA:
Addison-Wesley, 2018.

GIT. Free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency. 2025.
https://git-scm.com. Acesso em: 13 fev. 2025.

GITHUB. Build and ship software on a single, collaborative platform. 2025. https:
/[github.com/. Acesso em: 13 fev. 2025.

HOTWIRE. Hotwire: HTML Over The Wire. 2025. https://hotwired.dev/. Acesso em: 13 fev.
2025.

LEHMAN, M. M.; BELADY, L. A. Program Evolution: Processes of Software Change.
London: Academic Press, 1985.

LIMA, A. C. Projeto e implementacao de interface baseada na experiéncia do usuario para
um sistema de gerenciamento de trabalho de conclusao de curso. 2023 — Universidade
Tecnolégica Federal do Parana, Guarapuava, PR, 2023.

POSTGRESAQL. PostgreSQL: The World’s Most Advanced Open Source Relational
Database. 2025. https://www.postgresqgl.org/. Acesso em: 13 fev. 2025.

RAILS. Compress the complexity of modern web apps. 2025. https://rubyonrails.org. Acesso
em: 13 fev. 2025.

RAILS. Upgrading Ruby on Rails. 2025. https://guides.rubyonrails.org/upgrading_ruby_on_
rails.html. Acesso em: 06 fev. 2025.

SILVA, R. G. A. Aperfeicoamento do sistema de Gestao de Processos de Trabalho de
Conclusao de Curso de Tecnologia em Sistemas para Internet da UTFPR Campus
Guarapuava. 2019 — Universidade Tecnol6gica Federal do Parana, Guarapuava, PR, 2019.

SOMMERVILLE, I. Software Engineering. 9th. ed. Boston, MA: Addison-Wesley, 2011.

https://clickup.com/
https://clickup.com/
https://tcc.tsi.pro.br/uploads/attached_document/file/2/normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf
https://tcc.tsi.pro.br/uploads/attached_document/file/2/normas-operacionais-complementares-do-TCC-TSI-GP-2023-1.pdf
https://www.docker.com
https://www.docker.com
https://git-scm.com
https://github.com/
https://github.com/
https://hotwired.dev/
https://www.postgresql.org/
https://rubyonrails.org
https://guides.rubyonrails.org/upgrading_ruby_on_rails.html
https://guides.rubyonrails.org/upgrading_ruby_on_rails.html

30

APENDICE A - Cédigo do Componente de Listagem de Orientagées com

Vue.js

0O NOoO Ok~ WODN =

DO NN - 4 4
AP OWOMN -2 OOONOOOGLPA~OWDN-—= OO

31

A.1 Componente Vue.js

Listagem 1 — Componente OrientationsPage implementado com Vue.js

<template>
<div>
<div v-show="loading">
<loader />
</div>
<div v-show="!loading">
<h2 class="page-title mb-2">
{{ pageTitle }}
</h2>
<div class="text-right mb-3">
Total de {{ orientations.length }} TCCs aprovados
</div>
<div v-for="orientation in orientations"”
:key="orientation.id"
class="orientations mb-4">
<div>
<orientation-details :orientation="orientation" />
</div>
</div>
</div>
</div>
</template>

Fonte: Autoria propria (2025).

A.2 View que Renderiza o Componente

0N Ok WN =

W W WWWOWOWOWOWOWMNDMNDMNPDNDNNDNODNDNDNODN S =L
O© O NO O A WN 220 O0O0ONOOOOOOPRRWN—-OOONOOODOPWON OO

Listagem 2 — Componente OrientationsPage implementado com Vue.js

32

<script>
import Loader from ’../shared/loader’;
import OrientationDetails from ’./orientation-details.vue’;

export default
name: ’'OrientationsPage’,

components: {
Loader,
OrientationDetails

by

props: {
pageTitle: {
type: String,
required: true
b
path: {
type: String,
required: true
}
}I

data () {
return {
loading: true,
title: 77,
orientations: []
bi
bo

async mounted() {
await this.S$axios
.get (this.path)
.then (response => (this.orientations = response.data.data));
this.loading = false;
}
bi
</script>

Fonte: Autoria propria (2025).

0N O WN =

Listagem 3 — View ERB que renderiza o componente Vue.js

33

<% provide(:head_title, @page.menu_title) %>

<div>
<orientations-page
:page-title="'<%= (@page.menu_title %>""
:path="'<%= api_vl_orientations_approved_path %>""
/>

</div>

Fonte: Autoria propria (2025).

34

APENDICE B - Cédigo do Componente de Listagem de Orientagées com

Renderizacao Server-Side

O OB~ WN =

NOoO ok~ WO =

- O ©W 00N O~ WN =

—_

—_
w N

B.1 Controller Rails (Ruby)

Listagem 4 — Método do controller que fornece os dados

35

class SiteController < ApplicationController
def approved_orientations
@page = Page.find_by(url: ’'tccs—aprovados’)
@orientations = Orientation.approved
end
end

Fonte: Autoria propria (2025).

B.2 View Principal (ERB)

Listagem 5 — View principal que renderiza a lista de orientac6es

<% provide(:head_title, @page.menu_title) %>

<%= render partial: "site/orientations/orientation_list", locals:

orientations: @orientations,

page: (@page,

translation_key: ’'site.pages.professors.approved.total’
}o%s>

Fonte: Autoria propria (2025).

B.3 Partial de Listagem (ERB)

Listagem 6 — Partial ERB que renderiza a lista de orientacé6es

<h2 class="page-title mb-2">
<%= page.menu_title %>
</h2>

<div class="text-right mb-3">

<%= (translation_key, count: orientations.count) .html_safe %>
</div>

<% orientations.each do |orientation| %>
<div class="orientations mb-4">
<%= render "site/orientations/orientation", orientation:
orientation %>
</div>
<% end %>

Fonte: Autoria propria (2025).

	Resumo
	Abstract
	Lista de Tabelas
	Lista de Abreviaturas e Siglas
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	1.2 Justificativa

	2 O SGTCC
	3 Materiais e métodos
	3.1 Materiais
	3.2 Métodos
	3.2.1 Recomendações Gerais para Atualização do Rails
	3.2.2 Recomendações para Atualização do Rails 6 para 7
	3.2.3 Recomendações para Atualização do Rails 7 para 8

	4 Processo de Desenvolvimento e Evolução do Sistema
	4.1 Planejamento e Preparação para a Atualização
	4.2 Execução e Estratégia de Migração
	4.3 Implementação das Atualizações e Refatorações Principais
	4.3.1 Atualização de Dependências e Bibliotecas
	4.3.2 Reestruturação de Componentes e Organização do Código

	4.4 Modernização da Camada de Interface com Hotwire
	4.4.1 Evolução da Arquitetura: do Vue.js ao Hotwire

	4.5 Comparação de Código e Fluxos de Requisições
	4.5.1 Arquitetura Anterior: Vue.js com AJAX
	4.5.2 Nova Arquitetura: Server-Side com Hotwire
	4.5.3 Comparação de Requisições HTTP

	4.6 Síntese dos Resultados Alcançados
	4.7 Repositório e Contribuições

	5 Considerações Finais
	Referências
	A Código do Componente de Listagem de Orientações com Vue.js
	A.1 Componente Vue.js
	A.2 View que Renderiza o Componente

	B Código do Componente de Listagem de Orientações com Renderização Server-Side
	B.1 Controller Rails (Ruby)
	B.2 View Principal (ERB)
	B.3 Partial de Listagem (ERB)

